
cs^ MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CENTER FOR SPACE RESEARCH
CAMBRIDGE, MASSACHUSETTS 02139

REVISION
LOG

TITLE: Software Detailed Design
Parameter Block Management

DOC. NO.
36-53239 Rev. 01

Revision Date
(mm/dd/yy)

ECO
No.

Page(s)
Affected

Reason Approval

01 4/9/96 36-573 all Initial version. Incorporated com­
ments from review.

Bias Thief Class (36-53239 01): Purpose

37.0 Bias Thief Class (36-53239 01)

37.1 Purpose

The purpose of the Bias Thief is to copy the contents the Front End Processor (FEP) pixel
bias map values to telemetry during science processing. The Bias Thief copies the values
directly from the FEP’s bias map in BEP-FEP shared-memory without directly interacting
with the software running on the FEP, hence the name “thief.”

As is for other telemetry producers, its telemetry utilization is bounded by the number of
telemetry packet buffers allocated to it by the system during startup. By convention, the
Science Manager (see Section 33.0) is allocated the bulk of the telemetry buffers, hence
the Bias Thief tends to trickle the maps to telemetry when telemetry is saturated with sci­
ence data.

37.2 Uses

The following lists the use of the Bias Thief class:

Use 1:: Select which type of bias maps are to be sent
Use 2:: Specify the bias map parameters for each Front End Processor
Use 3:: Start transmission of the pixel bias maps
Use 4:: Abort transmission of the pixel bias maps

37.3 Organization

Figure 166 illustrates the class relationships used by the BiasThief class.

April 9,1996 1104

Bias Thief Class (36-53239 01): Organization

FIGURE 166. Bias Thief Class Relationships

/ Task N)
/ (from Executive) /
\ requestEvent() i
^ yield() \

/—' v__
/ HuffmanMap Nt

/ ------ —— — 1
getTable() l-------huffmanMap-HKi

3^'

s~ __'
biasHuffman

/ HuffmanTable' _ ./ —.—_ ,, , t^ 1
/loadTableM

packData()
/

C packData() i
reset() 1

S/
// .////l

\\V X

abortQ
biasReady()
BiasThief()

goTaskEntry()
selectMode()
setFeplnfo()

Tf_Data_Cc_Bias_Map
(from IpcIGen)) <

putJBias Offsets() / /
m it Irl/ \ j /

X X

>ui Dias unseisi
put.CCD ld()
puLFEPldQ | /

put_Parameter_ld() i l
put_Start_Time() \ ■

setEmpty() \

Tf_Data_T e_Bias_Map
(from IpcIGen)

put Bias Offsets()
put CCD ld()

putCCD_Row()
put CCD_Row_Count()

put_Compression Table()
put FEP ld()

p u t_Packet_N u m b e r()
put_Parameter_ld()

put_Start_Time()

/' (from Protocols) /
C DOSt() (
\ waithorBuffer() 1

U-’

BiasThief- This class is a subclass of Executive: .Task and is responsible for send­
ing the pixel bias maps to telemetry while science processing is underway. This class pro­
vides a function which selects the type of pixel bias map to be sent, Timed Exposure or
Continuous Clocking (selectMode). It provides a function to load the properties of a
given FEP’s bias map, such as which CCD was being processed, what the initial overclock
values were, etc. (setFeplnf o). The class provides functions to start the bias operation
(biasReady) and to abort the transmission of the bias maps (abort).

Task- This class is supplied by the Executive class category. It represents and controls
an active running task. The BiasThief class inherits from this class, and uses the class’s

April 9,1996 1105

Bias Thief Class (36-53239 01): Organization

functions to relinquish control to allow other tasks of the same priority to run (yield),
and to detect queries from the TaskMonitor (requestEvent).

TaskNonitor (not shown)- This class is supplied by the Executive class category,
and is responsible for periodically polling each task in the instrument. When polled, the
BiasThief task responds using this classes member function (respond).

Huf fmanMap - This class maintains the collection of Huffman compression tables store
in I-cache. It provides functions to map an table index to the address in I-cache corre­
sponding to the selected table (getTable).

Huf fmanTable - This class is responsible for compressing data using a selectable com­
pression table. It provides functions which load a table from I-cache (loadTable), to reset
its state-machine to start compressing a set of data (reset), and to compress input data and
append the data to a user-supplied output buffer (packData).

Tf _Data_Cc_Bias_Map - This class is generated by the IP&CL code-generator, and
belongs to the IpclGen class category). It is a subclass of Protocols: :TlmForm and
is responsible for formatting a Continuous Clocking Bias Map telemetry packet. It pro­
vides functions which write the initial overclock values for the current bias map |
(put_Bias_Of f sets), write the CCD identifier used to produce the map
(put_CCD_Id), write the identifier of the FEP which produced the map
(put_FEP_Id), write the parameter block id used to compute the bias map
(put_Parameter_Id), and write the ACIS science timestamp, latched at the start of
the bias computation (put_Start_Time). It also provides a function which resets the
contents of the bias map data (setEmpty), and provides functions which return the
address and length of the bias map data buffer within the packet and set the number of 32-
bit words written into the buffer (get_Data_Address, get_Data_Avail,
set_Data_Written, not shown).

Tf _Data_Te_Bias_Map -This class is generated by the BP&CL code-generator, and
belongs to the IpclGen class category). It is a subclass of Protocols::TlmForm and
is responsible for formatting a Timed Exposure Bias Map telemetry packet. It provides
functions which write the initial overclock values for the current bias map |
(put_Bias_Of f sets), write the CCD identifier used to produce the map
(put_CCD_Id), write the identifier of the FEP which produced the map
(put_FEP_Id), write the parameter block id used to compute the bias map
(put_Parameter_Id), and write the ACIS science timestamp, latched at the start of
the bias computation (put_S tart_Time). It provides functions which write the starting
CCD row identifier into the packet, sets the number of rows written into the packet buffer
(put_CCD_Row, put_CCD_Row_Count), and writes the compression table identifier
used to pack the data (put_Compression_Table). It also provides a function which
resets the contents of the bias map data (setEmpty, not shown), sets the bias data packet
number (put_Packet_Number) and provides functions which return the address and
length of the bias map data buffer within the packet and set the number of 32-bit words
written into the buffer (get_Data_Address, get_Data_Avail,
set_Data_Written, not shown).

April 9,1996 1106

Bias Thief Class (36-53239 01): Organization

TlmForm - This class is provided by the Protocols class category, and is responsible
for overall formatting of telemetry packet buffers. It provides functions which wait for and
allocate a telemetry packet buffer (waitForBuf f er), and which post the buffer for
transfer to telemetry (post).

April 9,1996 1107

Bias Thief Class (36-53239 01): Scenarios

37.4.1 Use 1: Select which type of bias maps are to be sent

Prior to packing data, the client must select which type of bias maps are to be teleme­
tered, and specify the start time of the bias computation to be telemetered, and parameter
block id used to compute the maps by calling biasThief.selectModeQ.
selectMode() then records the information within the biasThief, and clears all
FEP-specific information within the biasThief.

37.4.2 Use 2: Specify the bias map parameters for each Front End Processor

After selecting the bias map mode and prior to packing data, the client must specify vari­
ous FEP-specific parameters for each bias map to send, using
biasThie f.setFepInf o(). This function selects which FEPs to use, which CCD pro­
duced the map, what the bias map base address is (in BEP address space), how many bias
pixels there are per row for that FEP, how many rows there are in the map, what the initial
overclock values are for the map, and which compression table to use for this map. After
calling this function for each configured FEP, the biasThief is ready to telemeter maps.

37.4 Scenarios

April 9, 1996 1108

Bias Thief Class (36-53239 01): Scenarios

37.4.3 Use 3: Start transmission of the pixel bias maps

Figure 167 illustrates the overall process used to telemetry the pixel bias maps from each
configured FEP. Some details have been omitted to simplify the explanation.

FIGURE 167. Trickle Pixel Bias Maps

1. In order to start sending the configured bias maps, the client informs the biasThief that
the maps are ready, using the binding function, biasThief.biasReadyQ.

2. jbiasThief.biasReady() de-asserts the abort flag, and calls notify() to inform
the task portion that the map is ready.

3. The main task loop, goTaskEntry, waits for notification that it should start, using
waitForEvent().

4. While waiting, if it receives a query from the taskMonitor, it replies using
t askMoni tor.respond().

5. If it waitForEvent() receives a start signal, goTaskEntry iterates through each
FEP until each of the bias maps have been sent, or until it is aborted. If a particular FEP
is configured, goTaskEntry() calls trickleTeBias() or trickleCcBias(),
depending on the mode specified by selectMode(), to telemeter that FEP’s map. For
this example, assume that a Timed Exposure bias is to be sent.

6. trickleTeBias() gets the address of the desired compression table using
huffmapMap.getTahleQ.

April 9,1996 1109

Bias Thief Class (36-53239 01): Scenarios

7. It passes this address to biasHuffman.loadTahleQ to copy the table from pro­
tected I-cache memory into a usable buffer.

8. trickleTeBias() constructs a telemetry format object, form, which is used to for­
mat the bias map’s telemetry buffer. It obtains a buffer for the form using
getBuf f er() (not shown), which then calls form.waitForBuf f er().
getBuf f er() uses the time-out feature of form.waitForBuffer() to occasionally
respond to taskMonitor queries and detect abort requests.

9. If a buffer is obtained without aborting the operation, trickleTeBias() initiates a
new compression operation using biasHuffman.resetQ.

10.lt then compresses a set rows of pixel bias map values directly into the telemetry buffer
using biasHuf fman.pac~kData().

11.If the buffer becomes full, the maximum allowed rows for one telemetry packet has
been packed, or the last row of the bias image has been processed,
trickleTeBias() posts the telemetry packet buffer to telemetry, using
form. post(). If there are more rows to process, it obtains a new buffer for the form,
and repeats the packing operation. Once the entire bias map for the FEP has been pro­
cessed, trickleTeBias() returns to its caller. The caller may then re-invoke
trickleTeBias() for another FEP’s map. This continues until all of the maps have
been posted, or until the operation is aborted.

37.4.4 Use 4: Abort transmission of the pixel bias maps

In order to stop the bias trickle algorithm before it completes, the client calls
biasThie f.ahort(). This sets the thief’s abort flag, and sends an event notifying it that
the operation has been aborted, using biasThie f.notify(). If the operation has
already completed, then the notification is consumed in the main loop and ignored. If the
operation is waiting for a telemetry packet buffer, the notification is consumed by the call
to requestEvent(), and the transmission of the current map, and maps from subse­
quent FEPs is aborted.

April 9,1996 1110

Bias Thief Class (36-53239 01): Class BiasThief

Documentation:

37.5 Class BiasThief

This class is responsible for copying the pixel bias map values from the
Front End Processors, and trickling these maps to telemetry.

Export Control:

Cardinality:

Hierarchy:

Superclasses:

Implementation Uses:

Public Interface:

Operations:

Protected Interface:

Operations:

Public

n

Task

Tf_Data_Te_Bias_Map
Tf_Data_Cc_Bias_Map
TaskMonitor taskMonitor
HuffmanMap huffmanMap

BiasThief()
abort()
biasReady()
goTaskEntry()
selectMode()
setFepInfo()

checkMonitor()
getBuffer()
setupTeForm()
trickleCcBias()
trickleTeBias()

April 9,1996 mi

Bias Thief Class (36-53239 01): Class BiasThief

Private Interface:

Constants: PIXELS_PER_ROW = 1024 locations
BUFFERTIMEOUT = 1 second
MAXROWS PER PACKET = 10 rows

Has-A Relationships:

unsigned timestamp: This is a copy of the start time of the bias run.

unsigned blockid: This is a copy of the parameter block id used to
start the run.

unsigned mode type: This is a copy of the type of bias map being
telemetered. 0 indicates Timed-exposure, and 1 indicates Continuous
Clocking.

Boolean abortFlag: This indicates whether the bias has been
aborted or not. This flag is cleared by calls to biasReady() and is
asserted by calls to abort().

static Huf fmanTable biasHuffman: This is the Huffman
Compression table object used by the Bias Thief to compress bias map
data into telemetry packet buffers.

const unsigned buffer_timeout: This is the maximum number
of timer ticks to wait for a telemetry buffer before checking for task mon­
itor queries, or abort requests (Acis::TICKS_PER_SECOND).

const unsigned maxrows: This is the maximum number of rows
that should be packed into a single telemetry buffer (10 TBD).

const unsigned pixels_per_rovr. This is the number of pixels
locations in 1 row in the bias map (1024).

struct Feplnf o fepInfo[6]: This is an array of information struc­
tures used to configure the bias telemetry operation for each FEP. The
structure is as follows:
const unsigned short* base: Points to FEP’s pixel bias map. 0 if FEP unused.

Ccdld ccd: Speicifes which CCD the FEP is processing

unsigned rowpixels: Number of pixels in 1 bias map row

unsigned rowcnt: Number of rows in bias map

unsigned scale: Number of CCD rows summed on-chip into image row

unsigned biasoffset[4]: Pixel bias map offsets for each quadrant

unsigned compress: Compression table selection for the FEP

Concurrency: Active

Persistence: Persistent

April 9,1996 1112

Bias Thief Class (36-53239 01): Class BiasThief

37.5.1 BiasThiefQ

Public member of: BiasThief
Arguments:

Documentation:

unsigned taskid

This is the constructor for the Bias Thief task, taski d is the RTX identifier
for the task. This function passes taskid to its parent’s constructor,
Task(), and initializes the constants used by the class.

Concurrency: Sequential

37.5.2 abort()

Public member of: BiasThief
Return Class:

Documentation:

void

This function causes the bias thief to abort its current bias telemetry process­
ing. This function sets abortFlagto BoolTrue and calls notify() to
signal the task that an abort has been requested.

Concurrency: Synchronous

April 9, 1996 1113

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: void
Documentation:

37.5.3 biasReadyO

Public member of: BiasThief

This function indicates that the bias maps for all of the enabled Front End
Processors are ready to be telemetered. This function sets abort Flag to
BoolFalse, and then uses notify() to inform the task that a bias map is
ready to be sent.

Preconditions:

The client must first call selectMode(), and must then call
setFepInf o() for each FEP in use. This is only required after a reset, and
if the current mode or FEP parameters change. (Although it is not required
by the class, it is strongly recommended to call these functions for each run).

Concurrency. Synchronous

37.5.4 checkMonitor()

Protected member of: BiasThief
Return Class: Boolean
Documentation:

This function responds to queries from the task monitor, and detects whether
or not the current operation has been aborted. If the operation has been abort­
ed, the function returns BoolFalse. If not, it returns BoolTrue.

Semantics:

This function uses requestEvent() to poll for the task monitor query or
an abort signal. If the task monitor has issued a query, this function uses
taskMoni tor.respond() to respond to query. If an abort signal has been
issued, the function returns BoolFalse, otherwise, it returns BoolTrue.

Concurrency: Synchronous

April 9,1996 1114

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: Boolean
Arguments:

TlmFormfic form

37.5.5 getBufferO

Protected member of: BiasThief

Documentation:

This function waits for and allocates a buffer for the telemetry format,
form, while responding to queries from the taskMoni tor. If successful,
the function returns BoolTrue. If the operation is aborted, the function re­
turns BoolFalse.

Semantics:

This function consists of a loop which acquires a telemetry buffer for form.
by passing buffer_timeout to form.waitForBuf fer(). If a buffer
is allocated, the function returns. If the wait times out, the function calls
checkMonitor() to respond to any task monitor queries, and to detect an
abort of the bias telemetry operation. If aborted, the function returns imme­
diately. If not aborted, the loop iterates.

Concurrency: Synchronous

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: void
Documentation:

37.5.6 goTaskEntryO

Public member of: BiasThief

This function contains the main loop of the bias thief task.

Semantics.

This function consists of an infinite loop. At the top of the loop, the function
waits for and consumes start, abort and task monitor query signals. Abort
signals are discarded. If a task monitor query signal is received,
goTaskEntryO responds using taskMoni tor.respond(). If a start
signal is received, and abortFlagis BoolFalse, goTaskEntryO en­
ters a loop which sends the bias maps for each FEP in the system. (NOTE:
If abortFlag is BoolTrue, the abort request occurred after the start re­
quest, and no bias telemetry operation should be attempted). Within the
loop, if the base address for a given FEP is zero, then the corresponding
FEP’s bias is not sent, and the loop skips to the next FEP (see
selectMode() and setFepInf o()). If modetype is 0, then a Timed
Exposure bias map is being sent, and the function calls trickleTeBias()
to send the map. Otherwise, it is a Continuous Clocking bias, and
goTaskEntryO calls trickleCcBias() instead. If either function re­
turns BoolFalse, then an abort request has been received, and the bias te­
lemetry operation from subsequent FEPs is aborted. Otherwise, the process
repeats for each used FEP.

Concurrency: Synchronous

April 9, 1996 1116

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: void
Arguments:

unsigned mode
unsigned starttime
unsigned parameterld

Documentation:

This function selects whether or not to dump Timed-Exposure bias values,
or Continuous Clocking bias values, and configures the start time of the bias
run, and the parameter block id used to produce the map. If mode is 0,
Timed Exposure is used. If mode is 1, Continuous Clocking is used.
start time indicates the latched ACIS science timestamp at the start of
the bias run, parameterld is the id from within the parameter block used
to configure the run.

Preconditions:

37.5.7 selectMode()

Public member of: BiasThief

A bias telemetry operation must not already be in progress.

Semantics:

This function saves the passed parameters in its instance variables, and then
flags all FEPs as unused by zeroing the bias base address for each FEP entry
in the fepInfo[] array.

Postconditions:

No FEPs are configured to be used. For each FEP to be used,
setFeplnf o() must be called to set the bias map telemetry parameters for
the corresponding FEP.

Concurrency: Synchronous

April 9,1996 1117

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: void
Arguments:

Fepld fepid
const unsigned short* base
Ccdld ccd
unsigned rowpixels
unsigned rowcnt
const unsigned biasoffset [4]
unsigned compress
unsigned scale

Documentation:

This function sets up the bias thief to steal pixel bias values from a particular
FEP, indicated by fepid. base is the base address, within the FEP, of the
bias map. ccd indicates which CCD produce the map. rowpixels is the
number of map values in each row, and rowcn t is the number of rows from
the map to telemeter. The biasoffsets array contains the pixel initial
overclocks for each video chain, table specifies which compression table
to use (ignored if continuous clocking is being performed), scale is the
number of CCD rows in each image row (i.e. in 2x2 summing, there are two
CCD rows summed into 1 image row).

Preconditions:

37.5.8 setFepInfo()

Public member of: BiasThief

A bias telemetry operation must not already be in progress, and
selectMode() must have been called.

Semantics:

This function saves the passed parameters in the fepInfo[] entry indexed
by fepid.

Postconditions:

Once started, the bias map from fepid will be telemetered.

Concurrency. Synchronous

April 9,1996 1118

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: void

Arguments:
Tf_Data_Te_Bias_Map& form
unsigned packe tNum
unsigned pixel row
Fepld fepid

Documentation:

This function sets up the Timed Exposure telemetry form, form,
packe tNum is the packet number in the series for this FEP, and
pixel row is the row number, in image coordinates, of the first row in the
packet. Since data is packed last row to first, subsequent rows in the packet
have decrementing positions, fepid is the id of the FEP whose bias map is
being sent.

Preconditions:

37.5.9 setupTeForm()

Protected member of: BiasThief

The form must have allocated a telemetry packet buffer.

Semantics:

This function uses the form to store the passed information into the telem­
etry packet buffer, and zeros the bias data length using f orzn.setEmpty().

Concurrency: Synchronous

April 9,1996 1119

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: Boolean

Arguments:
Fepld fepid

37.5.10 trickleCcBias()

Protected member of: BiasThief

Documentation:

This function trickles the Continuous Clocking bias map from the FEP indi­
cated by fepid. If successful, the function returns BoolTrue. If it is
aborted, it returns BoolFalse.

Semantics:

This function first calls yield() to allow other tasks of the same priority to
run. It then calls checkMoni tor() to respond to any task monitor queries,
and to check for any abort requests. If aborted, trickleCcBias() returns
immediately. If not aborted, it proceeds to send the bias. It first passes a
NULL table pointer to biasHuffman.lo&dTahleQ to configure the data
compression algorithm to bit-pack the data, without compressing it, and
biasHuffman.resetQ to initialize the state of the packing algorithm. It
then creates a bias telemetry form, form, and calls ge tBuf f er() to obtain
a telemetry packet buffer. If getBuf f er() indicates an abort, the function
returns immediately. Once a buffer has been obtained, the function zeros the
bias data length of the buffer, and uses the form to set the start time, param­
eter block id, CCD Id, FEP Id, and initial overclocks into the telemetry buff- |
er. It then uses form.get_Data_Address() and
form.get_Data_Avail() to get the bias data buffer address and length
within the telemetry packet buffer. It then passes these to
biasHuffman.packDataQ to pack the one continuous clocking bias
map row into the telemetry packet buffer. It calls
form, s e t_Da t a_Wr i 11 en() to set the bias data word count in the buffer,
and then uses form.post() to post the packet buffer to telemetry.

Concurrency: Synchronous

April 9,1996 1120

Bias Thief Class (36-53239 01): Class BiasThief

Return Class: Boolean

Arguments:
Fepld fepid

Documentation:

This function trickles the Timed Exposure bias map from the FEP indicated
by fepid. If successful, the function returns BoolTrue. If it is aborted,
then it returns BoolFalse.

Semantics:

37.5.11 trickleTeBiasO

Protected member of: BiasThief

This function uses huffmanMap.getTable() to obtain the table pointer
for the FEP’s compression selection, and passes this pointer to
biasHuffman.loadTahle(). It then initializes some local variables and
enters its row processing loop. Rows are processed in reverse order, from the
end of the bias map to the beginning.

On each iteration, the function calls yield() to allow other tasks of the
same priority to run, and then checkMoni tor() to respond to task monitor
queries and detect abort requests. If aborted, the function returns immediate­
ly. The loop checks to see of the telemetry form, form, has a buffer using
form.hasBuf f er(), and if not, calls getBuf f er() to allocate a buffer,
setupTeForm() to initialize its contents, and biasHuf fman.resetQ to
reset the compression state.

It then calls biasHuf fmar.packDataO to pack one row of bias data to
the end of the telemetry buffer. If the entire row fit, it updates its row infor­
mation. If the row does not fit into the buffer, or if the last row in the map
has been packed, or if the maximum number of rows per packet have been
put into the telemetry buffer, the function uses form to store the total num­
ber words written, and the total number of rows written into the telemetry
buffer. It then uses f orm.post() to post the buffer to telemetry.

NOTE: If the form has a telemetry buffer when an abort is detected, the de­
structor for the form will release the buffer back into its pool. This prevents
the abort causing buffers to be “lost.”

Concurrency: Synchronous

April 9,1996 1121

