
0

NASA Procedural Requirements

NPR 7150.2
Effective Date: September 27, 2004
Expiration Date: September 27, 2009

NASA Software Engineering Requirements

Responsible Office: Office of the Chief Engineer

1

NPR 7150.2, Change History
Change Date Description

1

NASA Procedural Requirements

NPR 7150.2
Effective Date: September 27, 2004
Expiration Date: September 27, 2009

NASA Software Engineering Requirements

Responsible Office: Office of Chief Engineer

TABLE OF CONTENTS

PREFACE...3

P.1 Purpose..3
P.2 Applicability and Scope..3
P.3 Authority ...4
P.4 References...4
P.5 Cancellation ..4

CHAPTER 1. Introduction..5

1.1 Overview...5
1.2 Organizational Capability and Improvement..5
1.3 Hierarchy of NASA Software-Related Documents ..6

CHAPTER 2. Software Management Requirements ...9

2.1 Compliance with Laws, Policies, and Requirements..9
2.2 Software Life Cycle Planning...9
2.3 Commercial, Government, and Modified Off-The-Shelf Software....................................11
2.4 Software Verification and Validation ...12
2.5 Project Formulation Requirements ...13
2.6 Software Contract Requirements ..14

CHAPTER 3. Software Engineering (Life Cycle) Requirements..17

3.1 Software Requirements...17
3.2 Software Design..18
3.3 Software Implementation..19
3.4 Software Testing ...19
3.5 Software Operations, Maintenance, and Retirement ..20

2

CHAPTER 4. Supporting Software Life Cycle Requirements ..22

4.1 Software Configuration Management...22
4.2 Risk Management ...23
4.3 Peer Reviews/Inspections ...23
4.4 Software Measurement ...24
4.5 Best Practices ..25
4.6 Training...25

CHAPTER 5. Software Documentation Requirements ...26

5.1 Software Plans ..26
5.2 Software Requirements and Product Data ..30
5.3 Software Report Requirements ...34

CHAPTER 6. Tailoring, Warrant Authority, and Compliance Measurement................................37

6.1 Tailoring of Requirements ..37
6.2 Expertise of ITA Warrant Authority(s)...37
6.3 Compliance ...38

APPENDIX A. References...39

A.1 Applicable References ..39
A.2 Related References..40

APPENDIX B. Definitions ..41

APPENDIX C. Acronyms..48

APPENDIX D. Requirements Mapping Matrix ...49

LIST OF FIGURES
FIGURE 1-1 Relationships Among Governing Software Documents 7

3

PREFACE

P.1 Purpose
Software engineering is a core capability and a key enabling technology for NASA’s missions
and supporting infrastructure. This NASA Procedural Requirements (NPR) supports the
implementation of the NASA Policy Directive (NPD) 2820.1, NASA Software Policies. This
NPR provides the minimal set of requirements established by the Agency for software
acquisition, development, maintenance, operations, and management. This NPR is intended to
support NASA programs and projects to accomplish their planned goals (e.g., mission success,
safety, schedule, and budget) while satisfying their specified requirements. This NPR provides a
thorough, but not all inclusive, set of software engineering requirements in generic terms to be
applied throughout NASA and its contractor community.

P.2 Applicability and Scope
P.2.1 The requirements of this NPR cover software created or acquired by or for NASA,
including commercial-off-the-shelf software (COTS), government-off-the-shelf software (GOTS),
modified-off-the-shelf software (MOTS), open source, reuse, legacy, and heritage software.
Requirements in this NPR apply to all of the Agency’s product lines containing software systems
and subsystems. The applicability of requirements in this NPR to specific systems and
subsystems within Agency product lines, programs, and projects is determined through the use of
the NASA-wide definition of software classes in Appendix B, in conjunction with the
Requirements Mapping Matrix in Appendix D. It is not uncommon for a project to contain
multiple systems and subsystems having different software classes. Through the use of the
Requirements Mapping Matrix, the number of applicable requirements and their associated rigor
are scaled back for less critical software classes.

P.2.2 This NPR applies to NASA Headquarters, NASA Centers, and NASA Component
Facilities.

P.2.3 This NPR shall be applied to software development, maintenance, operations,
management, acquisition, and assurance activities started after its effective date of issuance
[SWE-001].

Note: This document is not applicable to software development, maintenance, operations,
management, acquisition, and assurance activities started before its effective date of issuance (i.e.,
existing systems and subsystems containing software for Shuttle, International Space Station,
Hubble, Chandra, etc.). If the respective Governing Program Management Council (GPMC)
determines that an existing software activity should follow all or part of this NPR, the results of
that decision should be documented in the Project Plan (as defined in NPR 7120.5, NASA
Program and Project Management Processes and Requirements). The respective GPMC can
make this determination based on the safety criticality of the existing project, the mission
criticality, project cost, current phase of the existing program, etc.

4

P.2.4 This NPR provides procedural requirements to the responsible NASA project managers
and contracting officers for NASA contracts. It is made applicable to contractors through contract
clauses, specifications, or statements of work in conformance with the NASA Federal Acquisition
Regulation (FAR) Supplement.

P.2.5 This NPR does not supersede more stringent requirements imposed by individual NASA
organizations and other Federal Government agencies. NASA program and project management
requirements are contained in NPR 7120.5, NASA Program and Project Management Processes
and Requirements. Requirements in this NPR are identified by “shall” and a requirement number.
Any material not identified by a “shall” in this NPR is informative in nature (e.g., notes,
introductory text, etc.). The responsible party for each requirement is identified by an underline.

P.3 Authority
a. 29 U.S.C. 749d, Section 508 of the Rehabilitation Act of 1973, as amended. Specific

requirements for accessibility may be found at 36 CFR Part 1194, available at
http://www.access-board.gov/sec508/508standards.htm.

b. 35 U.S.C. 200 Chapter 18 – Patent Rights in Inventions Made with Federal Assistance.
c. 40 U.S.C. 1401, et seq. Section 808 of Public Law 104-208, the Clinger-Cohen Act of 1996

[renaming, in pertinent part, the Information Technology Management Reform Act (ITMRA),
Division E of Public Law 104-106].

d. 42 U.S.C. 2457 Property Rights in Inventions.
e. 42 U.S.C. 2473(c)(1) of the National Aeronautics and Space Act of 1958, as amended.
f. 44 U.S.C 3501 et seq., Paperwork Reduction Act of 1994 (Public Law 104-13).
g. OMB Circular A-130, Management of Federal Information Resources.

P.4 References
See Appendix A for a complete reference list of all documents cited in this NPR.

P.5 Cancellation
None.

/S/
Theron M. Bradley, Jr.
NASA Chief Engineer

5

 CHAPTER 1. Introduction

1.1 Overview

1.1.1 This NPR provides a common set of generic requirements for software created and acquired
by or for NASA. Software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance of software: that is,
the application of engineering to software. This NPR is designed to be a stand-alone
compendium of requirements to protect the Agency’s investment in software engineering
products and to fulfill its responsibility to the citizens of the United States of America.

1.1.2 The requirements in this NPR are easily mapped to industry standards and proven NASA
experience in software engineering. Centers and software developers will find that many
of the requirements are already satisfied through programs, procedures, and processes that
are already in place.

1.1.3 The Agency will make significant investments in software engineering to support the
Agency’s product lines: Flight Products, Advanced Technology Development, Sustaining
Operations, Functional Infrastructure, and Basic and Applied Research. NASA must
ensure that programs, projects, systems, and subsystems that utilize software follow a basic
set of requirements. A One NASA approach is being used to bring the Agency’s
engineering community together to optimize resources and talents across Center
boundaries. For engineers to effectively communicate and work seamlessly among
Centers, a common framework of generic requirements is needed. This NPR fulfills this
need for the Agency within the discipline of software engineering.

1.1.4 This NPR makes no recommendation for a specific life cycle model. Each has its strengths
and weaknesses, and no one model is best for all situations. It is important to evaluate the
potential life cycle models and select one that best matches the product you are producing.
Standards or organizational policy may dictate a particular life cycle model.

1.1.5 The Office of the Chief Engineer is committed to instituting and updating these
requirements to meet the Agency’s current and future challenges in software engineering.
Successful experiences will be codified in an updated version of this NPR after experience
has been gained through its use within the NASA software community, the collection of
lessons learned from projects, and the implementation records of Independent Technical
Authority (ITA) warrant authorities.

1.2 Organizational Capability and Improvement
Software engineering is a core capability and a key enabling technology necessary for the support
of NASA's Mission Directorates. Ensuring the quality, safety, and reliability of NASA software
is of paramount importance in achieving mission success. This chapter describes the
requirements to help NASA maintain and advance organizational capability in software
engineering practices to effectively meet scientific and technological objectives.

1.2.1 The NASA Chief Engineer shall lead, maintain, and fund an Agencywide Software
Engineering Initiative to advance software engineering practices. [SWE-002]

6

1.2.2 Each Center shall maintain, staff, and implement a plan to continually advance its in-house
software engineering capability and monitor the software engineering capability of
NASA’s contractors, as per NASA’s Software Engineering Initiative Improvement Plan.
[SWE-003]

Note: The requirements for the content of each Center Software Engineering Improvement Plan
are defined in Chapter 5. Each Center has a current Center Software Engineering Improvement
Plan on file in the Office of the Chief Engineer.

1.2.3 The NASA Chief Engineer shall periodically benchmark each Center’s software
engineering capability against its Center Software Engineering Improvement Plan. [SWE-
004]

Note: Center Software Engineering Improvement Plans should be documented per Center
Software Engineering Improvement Plan requirements. Capability Maturity Model® Integration
(CMMI®) - systems engineering and software engineering (CMMI®-SE/SW) appraisals are the
preferred benchmark for objectively measuring progress toward software engineering process
improvement at NASA Centers.

1.2.4 Each Center shall establish, document, execute, and maintain software processes. [SWE-
005]

1.2.5 To support compliance with NASA policy and facilitate the application of resources to
mitigate risk, the NASA Chief Engineer, in coordination with the Chief Safety and Mission
Assurance Officer, shall maintain a process that provides, on a recurring basis, a reliable
list of the Agency’s programs and projects containing software. [SWE-006]

1.3 Hierarchy of NASA Software-Related Documents

This paragraph helps the reader understand the flow down of requirements with respect to
software created and acquired by or for NASA. Figure 1-1 shows the software engineering
perspective of the relationship between relevant documents. The text that follows the figure
provides a brief description of each type of document, listed according to its position in the figure.

(e.g., NPD/NPR 7120, …)

NPD/NPRs that contain additional software related requirements
for specific Centers, major projects, or Agency product lines

1.3.4 Center Level Directives
(related to software)

1.3.5 Contractor and Sub-Contractor Policies and Procedures
(related to software)

NPD 2820.1, NASA Software Policies
1.3.2 Agency Level / Software & Information Technology Specific Requirements

1.3.1 Higher Agency-Level Requirements

Software Assurance and
IV&V Requirements

Software Engineering
Procedural Requirements

(this document)

Information Technology
Management,

Security, and External
Release

1.3.3 Agency Level Multi-Center and Product Line Requirements (Non-Software Specific)

1.3.6 NASA Software
Related

Standards &
Guidebooks

1.3.6 NASA Preferred
Industry Software

Standards &
Guidebooks

as invoked

as invoked
by contract

as invoked

as invoked
by contract
FIGURE 1-1 Relationships Among Governing Software Documents
7

8

1.3.1 Higher Agency-Level Requirements
These NPDs and NPRs document the overarching management system for the Agency and
describe requirements that cut across several disciplines. Examples of relevant higher level
documents of this nature include: NPD 1000.1, NASA Strategic Plan; NPR 1000.2, NASA
Strategic Management Handbook; NPR 1000.3, The NASA Organization; NPD 7120.4,
Program/Project Management; and NPR 7120.5, NASA Program and Project Management
Processes and Requirements. These policies may include very high-level requirements relevant to
software and information technology that are elaborated in lower-level policies and procedural
requirements.

1.3.2 Agency-Level Software and Information Technology Specific Requirements
NPD 2820.1, NASA Software Policies, is an overarching document that establishes top-level
policies for all software created and acquired by or for NASA. This NPR elaborates and provides
further detail on the requirements in NPD 2820.1 within the discipline of engineering during
software acquisition, development, maintenance, operations, and management. Additional
requirements in closely related areas have been established by the Office of Safety and Mission
Assurance, the Chief Information Officer, Exploration Systems Mission Directorate, and Office
of Security and Program Protection.

1.3.3 Agency-Level Multi-Center and Product Line Requirements (Non-Software Specific)
These NPDs and NPRs elaborate, tailor, and in some cases add requirements to the ones above to
address the needs of major multi-Center projects, specific product lines, and specific focus areas.
An example of a representative NPR in this category is NPR 8705.2, Human-Rating
Requirements for Space Flight Systems.

1.3.4 Center-Level Directives (related to software)
Center-Level Directives are developed by NASA Centers to document their local software
policies, requirements, and procedures. These directives are responsive to the requirements above
them while addressing the specific application areas and the Center’s mission within the Agency.

1.3.5 Contractor and Subcontractor Policies and Procedures
Contractors and subcontractors develop in-house policies and procedures to provide quality
products and to fulfill the requirements passed down through a contract by a customer.
Contractor and subcontractor policies and procedures are typically designed to satisfy a number of
different customers in an effective and efficient manner.

1.3.6 NASA and Industry Software Standards and Guidebooks
NASA Preferred Industry Software Standards and Guidebooks and NASA Software-Related
Standards and Guidebooks are required when invoked by an NPD, NPR, Center-Level Directive,
contract clause, specification, or statement of work.

9

CHAPTER 2. Software Management Requirements
The software management activities define and control the many software aspects of a project
from beginning to end. This includes the interfaces to other organizations, determination of
deliverables, estimates and tracking of schedule and cost, risk management, formal and informal
reviews as well as other forms of verification and validation, and determination of the amount of
supporting services. The planned management of these activities is captured in one or more
software and/or system plans.

2.1 Compliance with Laws, Policies, and Requirements
The software management process requires the understanding and application of other NASA
policy requirements that impact the development, release, and/or maintenance of the software.

2.1.1 The project shall ensure that software disclosure requirements of NPD 2091.1, Inventions
Made By Government Employees, are implemented by their project, Section 305 of the
Space Act (42 U.S.C 2457) for large business contractors, and 35 U.S.C. 200 et seq.,
(including Section 202(c)) for small businesses, universities, and non-profits are
implemented by their project. [SWE-007]

2.1.2 The project shall ensure that software technology transfer requirements of NPR 2190.1,
NASA Export Control Program, are implemented by the project. [SWE-008]

2.1.3 The project shall ensure that software external release requirements of NPR 2210.1,
External Release of NASA Software, are implemented by the project. [SWE-009]

2.1.4 The project shall ensure that the security requirements of NPD 2810.1, NASA Information
Security Policy, are implemented by the project. [SWE-010]

2.1.5 The project shall ensure that the requirements of reasonable accommodation for individuals
with disabilities per NPR 3713.1, Procedures for Providing Reasonable Accommodation for
Individuals with Disabilities, are implemented by the project. [SWE-011]

2.1.6 The project shall ensure that software is accessible to individuals with disabilities as
required by Section 508 of the Rehabilitation Act (29 U.S.C. 749d), as amended. Specific
requirements for accessibility may be found at 36 CFR Part 1194, available at
http://www.access-board.gov/sec508/508standards.htm. [SWE-012]

2.2 Software Life Cycle Planning
Software Life Cycle Planning covers the software aspects of a project from inception through
retirement. It is meant as an organizing process that considers the software as a whole and
provides the planning activities required to insure a coordinated, well-engineered process for
defining and implementing project activities. These processes, plans, and activities are
coordinated within the greater project. At project conception, software needs for the project are
analyzed, including acquisition, supply, development, operation, maintenance, and supporting
activities and processes. The software effort is scoped and the processes, measurements, and
activities are documented in software plan(s).

10

2.2.1 The project shall develop software plan(s). [SWE-013]

Note: The requirement for the content of each software plan (whether stand-alone or condensed
into one or more project level or software documents) is defined in Chapter 5. These include, but
are not limited to:
a. Software development or management plan.
b. Software configuration management plan.
c. Software test plans.
d. Software maintenance plans.
e. Software assurance plans.

2.2.2 The project shall implement and execute the software plan(s). [SWE-014]

2.2.3 The project shall establish, document, and maintain at least one software cost estimate that
satisfies the following conditions: [SWE-015]
a. Covers the entire software life cycle.
b. Is based on selected project attributes (e.g., assessment of the size, functionality,

complexity, criticality, and risk of the software processes and products).
c. Is based on an assessment of the technology to be used and the impact on risk, cost, and

schedule.

2.2.4 The project shall document and maintain a software schedule that satisfies the following
conditions: [SWE-016]
a. Coordinates with the overall project schedule.
b. Documents the interactions of milestones and deliverables between software, hardware,

operations, and the rest of the system.

2.2.5 The project shall plan, track, and ensure project specific software training for project
personnel. [SWE-017]

2.2.6 The project shall regularly hold reviews of software activities, status, and results with the
project stakeholders and track issues to resolution. [SWE-018]

2.2.7 The project shall select and document a software development life cycle or model that
includes phase transition criteria for each life cycle phase (e.g., formal review milestones,
informal reviews, software requirements review (SRR), preliminary design review (PDR),
critical design review (CDR), test readiness reviews, customer acceptance or approval
reviews). [SWE-019]

2.2.8 The project shall classify each of the systems and subsystems containing software in
accordance with the software classifications definitions for Class A, B, C, D, E, F, G and H
in Appendix B. [SWE-020]

11

Note: These classifications are documented in the Software Development or Management Plan as
defined in Chapter 5. Software Assurance also performs an independent classification assessment
and the results should be compared as per NASA-STD-8739.8, NASA Software Assurance.

2.2.9 If a system or subsystem evolves to a higher software classification as defined in Appendix
B, then the project shall update its plan to fulfill the added requirements per the
Requirements Mapping Matrix. [SWE-021]

2.2.10 The project shall ensure that software assurance is implemented by their project as per
NASA-STD-8739.8, NASA Software Assurance. [SWE-022]

Note: Software assurance activities occur throughout the life of the project and, while some of
the actual analyses may be performed within the project, NASA’s safety and mission assurance
organizations provide assurance that the products and processes are implemented according to the
agreed upon plan(s). It is important to have software assurance of all software activities and
products including Request for Proposals, contracts and memorandums of agreement, software
plans, requirements, design, implementation, verification, validation, certification, acceptance,
maintenance, operations, and retirement.

2.2.11 When a project is determined to have safety critical software, the project shall ensure that
the safety requirements of NASA-STD-8719.13, Software Safety, are implemented by the
project. [SWE-023]

2.2.12 The project shall ensure that actual results and performance are tracked against the
software plans. [SWE-024]

2.2.13 The project shall ensure that corrective actions are taken and managed to closure when
actual results and performance deviate from the software plans. [SWE-025]

2.2.14 The project shall ensure that changes to commitments (e.g., software plans) are agreed to
by the affected groups and individuals. [SWE-026]

2.3 Commercial, Government, and Modified Off-The-Shelf Software
Since many of NASA’s projects now contain off-the-shelf software products, it is important to
plan and manage when and how to incorporate them. The off-the-shelf software discussed here
apply only when those off-the-shelf software are to be included as part of a NASA system (per
section P.2.1). The following requirements do not apply to standalone desktop applications (e.g.
MS Word, Adobe Acrobat, MS Power Point). However, when applications such as MS Excel or
MS Access are used within a NASA system/subsystem as defined by the classes in this NPR, then
they will need to be assessed and classified as part of the software subsystem in which they
reside.

2.3.1 The project shall ensure that when COTS, GOTS, MOTS, open source, reuse, legacy, or
heritage software product is to be acquired, the following conditions are satisfied: [SWE-
027]
a. The requirements that are to be met by the off-the-shelf software are identified.

12

b. The off-the-shelf software includes documentation to fulfill its intended purpose (e.g.
usage instructions).

c. Proprietary, usage, ownership, warranty, licensing rights, and transfer are addressed.
d. Future support for the off-the-shelf software product is planned.
e. Off-the-shelf software is validated to the same level of confidence as would be required

of the developed software.

Note: It is the responsibility of the organization proposing to procure off-the-shelf software to
document, prior to procurement, the plan for validating that such software can be assigned the
same level of confidence that would be needed for an equivalent class of software if obtained
through a “development” process.

Note: For critical systems or systems which must be maintained for long periods of time beyond
the time a supplier would maintain or support the software the following should be considered:
a. Supplier agreement to deliver or escrow source code or third party maintenance agreement is

in place.
b. A risk mitigation plan to cover the following cases is available:

(1) Loss of supplier or third party support for the product.
(2) Loss of maintenance for the product (or product version).
(3) Loss of the product (e.g., license revoked, recall of product, etc.)

c. Agreement that the project has access to defects discovered by the community of users has
been obtained. When available, the project can join a product users group to obtain this
information.

d. The plan to provide adequate support is in place, including timely maintenance and cost of
maintenance.

e. Any changes to the software management, development, operations, or maintenance plans that
are affected by the use or incorporation of COTS, GOTS, MOTS, reuse, legacy, or heritage
software should be documented by the project.

2.4 Software Verification and Validation
Ensuring that the software products meet their requirements and that the products were built
correctly is the purpose of verification and validation. Both software validation and software
verification activities span the entire software life cycle and need to be planned. Formal and
informal reviews, peer reviews/inspections, testing, demonstration, and analyses all can be used.
Each project is generally free to choose the extent and combination of verification and validation
methods and activities that best suit the project. Because peer reviews are such an important
verification tool with proven value, there are specific peer review requirements in this NPR
(Chapter 4).

2.4.1 The project shall plan software verification activities, methods, environments, and criteria
for the project. [SWE-028]

Note: Software verification is a software engineering activity that demonstrates the software
products meet specified requirements. Methods of software verification include: peer
reviews/inspections of software engineering products for discovery of defects, software

13

verification of requirements by use of simulations, black box and white box testing techniques,
analyses of requirement implementation, and software product demonstrations. Planning for
software verification should address the development, management review, and documentation
for the software products. Refer to the Software Development or Management Plan software
documentation requirement for software verification planning and incorporation (Chapter 5).

2.4.2 The project shall plan the software validation activities, methods, environments, and criteria
for the project. [SWE-029]

Note: Software validation is a software engineering activity that demonstrates the as-built
software product or software product component satisfies its intended use in its intended
environment. Methods of software validation include: peer reviews/inspections of software
product component behavior in a simulated environment, acceptance testing against mathematical
models, analyses, and operational environment demonstrations. Planning for software validation
should address the development, maintenance, support, and training for the software product and
software product components. Refer to the Software Development or Management Plan software
documentation requirement for software validation planning and incorporation (Chapter 5).

2.4.3 The project shall record, address, and track to closure the results of software verification
activities. [SWE-030]

2.4.4 The project shall record, address, and track to closure the results of software validation
activities. [SWE-031]

2.5 Project Formulation Requirements

Much of the project preparation and planning takes place during project formulation. While in
the past, software planning was often left until later in the project life cycle, it is now seen as an
essential part of the early planning phases and must be started as the project begins. This is
especially important as software requirements must be properly incorporated into the project cost
and schedule estimates, work planning, Request for Proposals, the evaluation of the contractors,
and the contracts themselves.

2.5.1 Consistent with the Requirements Mapping Matrix (Appendix D), the project shall ensure
that software is developed by either a software CMM® Maturity Level 3 or higher
organization; or by an organization that has a CMMI®-SE/SW Capability Level 2 or higher
as measured by a Software Engineering Institute (SEI) authorized lead appraiser from an
external organization in the following Process Areas: [SWE-032]
a. Requirements Management.
b. Configuration Management.
c. Process and Product Quality Assurance.
d. Measurement and Analysis.
e. Project Planning.
f. Project Monitoring and Control.
g. Supplier Agreement Management.

14

Note: Organizations who have completed Standard CMMI® Appraisal Method for Process
Improvement (SCAMPI) Class A appraisals against the CMMI® Model are expected to have
their results posted on the SEI web site so that NASA can assess the current maturity state in the
selection process.

2.5.2 The project shall assess options for acquisition against analysis of appropriate criteria to
include risk, cost, and benefits for each option listed below: [SWE-033]
a. Acquire an off-the-shelf software product that satisfies the requirement.
b. Develop the software product or obtain the software service internally.
c. Develop the software product or obtain the software service through contract.
d. A combination of a, b, and c above.
e. Enhance an existing software product or service.

2.5.3 The project shall define and document or record the acceptance criteria and conditions for
the software. [SWE-034]

2.5.4 For new contracts the project shall establish a procedure for software supplier selection
including proposal evaluation criteria. [SWE-035]

2.5.5 The project shall determine which software processes, activities, and tasks are appropriate
for the project. [SWE-036]

2.5.6 The project shall define the milestones at which the software supplier(s) progress will be
reviewed and audited as a part of the monitoring of the acquisition. [SWE-037]

Note: All known contract milestones are expected to be included in the resulting contract.

2.5.7 The project shall document software acquisition planning decisions. [SWE-038]
Note: This may be in an acquisition plan or in another project planning document.

2.6 Software Contract Requirements

The requirements in this section are applicable for NASA contracted software procurements (e.g.,
reuse of existing software, modification of existing software, contracted and subcontracted
software, and/or development of new software). Acquisition requirements are focused both inside
the acquisition organization to ensure the acquisition is conducted effectively and outside the
acquisition organization as the organization conducts project monitoring and control of its
suppliers. These acquisition requirements provide a foundation for acquisition process discipline
and rigor that enables product and service development to be repeatedly executed with high levels
of ultimate acquisition success. This section contains the software acquisition requirements that
should be performed by NASA organizations acquiring systems and/or services.

2.6.1 Government software insight requirements

15

2.6.1.1 The project shall require the software supplier(s) to provide insight into software
development and test activities, including monitoring integration and verification
adequacy, trade study data, auditing the software development process, and participation
in all software reviews and technical interchange meetings. [SWE-039]

2.6.1.2 The project shall require the software supplier(s) to provide NASA all software products
and software process tracking information, in electronic format, including all software
development and management metrics. [SWE-040]

2.6.1.3 The project shall require the software supplier(s) to notify the project, in the response to
the Request for Proposals, as to whether open source software will be included in code
developed for the project. [SWE-041]

2.6.1.4 The project shall require the software supplier(s) to provide NASA with electronic access
to the source code developed for the project, including modified off-the-shelf software
and non-flight software (ground test software, simulations, ground analysis software,
ground control software, science data processing software, hardware manufacturing
software, or other). [SWE-042]

Note: All known contract requirements should be addressed in the Request for Proposals and
included in the resulting contract. Additionally, if the project needs to control further use and
distribution of the resulting software or requires unlimited rights in the software, e.g., right to use,
modify, and distribute the software for any purpose, the project should consider having the
software copyright assigned to the government. This should be addressed in the Request for
Proposals. The project should consult the Center Chief of Patent/Intellectual Property Counsel
regarding required rights in the software.

2.6.2 Supplier Monitoring Requirements

2.6.2.1 The project shall require the software supplier to track all software changes and provide
the data for the project’s review. [SWE-043]

2.6.2.2 The project shall require the software supplier(s) to provide software metric data as
defined in the project’s Software Metrics Report. [SWE-044]

Note: The requirements for the content of the Software Metric Report are defined in Chapter 5.

2.6.2.3 The project shall participate in any joint NASA/contractor audits of the software
development process and software configuration management process. [SWE-045]

2.6.2.4 The project shall require the software supplier(s) to provide a software schedule for the
project’s review and updates as requested. [SWE-046]

2.6.2.5 The project shall require the software supplier(s) to make available, electronically, the
software traceability data for the project’s review. [SWE-047]

16

2.6.2.6 The project shall document in the solicitation the software processes, activities, and tasks
to be performed by the supplier. [SWE-048]

17

CHAPTER 3. Software Engineering (Life Cycle) Requirements

This NPR makes no recommendation for a specific life cycle model. Each has its strengths and
weaknesses, and no one model is best for all situations. Whether using the spiral model, the
iterative model, waterfall, or any other development life cycle model, each has steps of
requirements, design, implementation, testing, release to operations, maintenance, and retirement.
Without recommending a life cycle, the requirements for each of these steps are provided below.

3.1 Software Requirements
The requirements phase is one of the most important phases of software engineering. Studies
show that the top problems in the software industry are due to poor requirements elicitation,
inadequate requirements specification, and inadequate management of changes to requirements.
Requirements provide the foundation for the entire life cycle as well as for the software product.
Requirements also provide a basis for planning and estimating. Requirements are based on
customer, user, and other stakeholder needs and design and development constraints. The
development of requirements includes elicitation, analysis, documentation, verification, and
validation. It is important that there is ongoing customer validation of the requirements to ensure
the end products meet the customer needs. This can be accomplished via rapid prototyping and
customer involved reviews of iterative and final software requirements.

3.1.1 Requirements Development

3.1.1.1 The project shall document the software requirements. [SWE-049]

Note: The requirements for the content of each Software Requirement Specification and Data
Dictionary are defined in Chapter 5.

3.1.1.2 The project shall identify, develop, document, approve, and maintain software
requirements based on analysis of customer and other stakeholder requirements and the
operational concepts. [SWE-050]

3.1.1.3 The project shall perform software requirements analysis based on flowed-down and
derived requirements from the top-level systems engineering requirements and the
hardware specifications and design. [SWE-051]

Note: This analysis is for safety criticality, correctness, consistency, clarity, completeness,
traceability, feasibility, verifiability, and maintainability. This includes the allocation of
functional and performance requirements to functions and subfunctions.

3.1.1.4 The project shall perform, document, and maintain bi-directional traceability between the
software requirement and the higher level requirement. [SWE-052]

Note: The project should identify any orphaned or widowed requirements (no parent or no child)
associated with reused software.

18

3.1.2 Requirements Management

3.1.2.1 The project shall collect and manage changes to the software requirements. [SWE-053]

Note: The project should analyze and document changes to requirements for cost, technical, and
schedule impacts.

3.1.2.2 The project shall identify inconsistencies between requirements, project plans, and
software products and initiate corrective actions. [SWE-054]

Note: A verification matrix supports the accomplishment of this requirement.

3.1.2.3 The project shall perform requirements validation to ensure that the software will perform
as intended in the customer environment. [SWE-055]

Note: This should include confirmation that the requirements meet the needs and expectations of
the customer.

3.2 Software Design
Architectural design is concerned with creating a strong overall structure for software entities that
fulfill allocated system and software-level requirements. Typical views captured in an
architectural design include the decomposition of the software subsystem into design entities,
computer software configuration items (CSCI), definitions of external and internal interfaces,
dependency relationships among entities and system resources, and finite state machines.
Detailed design further refines the design into lower level entities that permit the implementation
by coding in a programming language. Typical attributes that are documented for lower level
entities include: identifier, type, purpose, function, constraints, subordinates, dependencies,
interface, resources, processing, and data. Rigorous specification languages, graphical
representations, and related tools have been developed to support the evaluation of critical
properties at the design level. Projects are encouraged to take advantage of these improved design
techniques to prevent and eliminate errors as early in the life cycle as possible.

3.2.1 The project shall document the software design. [SWE-056]

Note: The requirements for the content of the software design description and interface design
description are defined in Chapter 5.

3.2.2 The project shall transform the allocated and derived requirements into a documented
architectural design. [SWE-057]

3.2.3 The project shall develop and record a detailed design based on the architectural design that
describes the lower level units so that they can be coded, compiled, and tested. [SWE-058]

3.2.4 The project shall perform and maintain bi-directional traceability between the software
requirements and the software design. [SWE-059]

19

3.3 Software Implementation
Software implementation consists of implementing the requirements and design into code, data,
and documentation. Software implementation also consists of following coding methods and
standards. Unit testing is also usually a part of software implementation (unit testing can also be
conducted during the testing phase).

3.3.1 The project shall implement the software design into software code. [SWE-060]

3.3.2 The project shall ensure that software coding methods, standards, and/or criteria are
adhered to and verified. [SWE-061]

3.3.3 The project shall ensure that the software code is unit tested per the plans for software
testing. [SWE-062]

3.3.4 The project shall provide a Software Version Description document for each software
release. [SWE-063]

Note: The requirements for the content of the Software Version Description document are
defined in Chapter 5.

3.3.5 The project shall provide and maintain traceability from software design to the software
code. [SWE-064]

3.4 Software Testing

The purpose of testing is to verify the software and remove defects. Testing verifies the code
against the requirements and the design to ensure that the requirements are implemented. Testing
also identifies problems and defects that are corrected and tracked to closure before product
delivery. Testing should also validate that the software operates appropriately in the intended
environment.

3.4.1 The project shall provide: [SWE-065]
a. Software Test Plan(s).
b. Software Test Procedures.
c. Software Test Reports.

Note: The requirements for the content of the Software Test Plan, Software Test Procedures, and
Software Test Reports are defined in Chapter 5.

3.4.2 The project shall perform software testing as defined in the Software Test Plan. [SWE-
066]

Note: Testing could include software integration testing, systems integration testing, end-to-end
testing, acceptance testing, white and black box testing, decision and path analysis, statistical

20

testing, stress testing, performance testing, regression testing, qualification testing, simulation,
and others. Automated testing tools should also be considered.

3.4.3 The project shall ensure that the implementation of each software requirement is verified to
the requirement. [SWE-067]

3.4.4 The project shall evaluate test results and document the evaluation. [SWE-068]

3.4.5 The project shall document defects identified during testing and track to closure. [SWE-
069]

3.4.6 The project shall test, validate, and certify software models, simulations, and analysis tools.
[SWE-070]

3.4.7 The project shall update Software Test Plan(s) and Software Test Procedure(s) to be
consistent with software requirements. [SWE-071]

3.4.8 The project shall provide and maintain traceability from the Software Test Procedures to
the software requirements. [SWE-072]

3.4.9 The project shall ensure that the software system is validated on the targeted platform or
high-fidelity simulation. [SWE-073]

3.5 Software Operations, Maintenance, and Retirement
Planning for operations, maintenance, and retirement begins early in the software life cycle.
Operational concepts and scenarios are derived from customer requirements and validated in the
operational or simulated environment. Software maintenance activities sustain the software
product after it is delivered to the customer until retirement.

3.5.1 The project shall document the software maintenance plans in the Software Maintenance
Plan document. [SWE-074]

Note: The requirements for the content of the Software Maintenance Plan are defined in Chapter
5.

3.5.2 The project shall plan software operations, maintenance, and retirement activities. [SWE-
075]

3.5.3 The project shall implement software operations, maintenance, and retirement activities as
defined in the respective plans. [SWE-076]

3.5.4 The project shall complete and deliver the software product to the customer with
appropriate documentation to support the operations and maintenance phase of the software
life cycle. [SWE-077]

21

Note: Delivery includes, as applicable, Software User’s Manual (as defined in Chapter 5), source
files, executable software, procedures for creating executable software, procedures for modifying
the software, and a Software Version Description. Open source software licenses should be
reviewed by the Center Chief of Patent/Intellectual Property Counsel before being accepted into
software development projects. Other documentation that should be considered for delivery is:

a. Summary and status of all accepted Change Requests to the baselined Software
Requirements Specifications.

b. Summary and status of all major software capability changes since baselining of the
Software Design Documents.

c. Summary and status of all major software tests (including development, verification,
and performance testing).

d. Summary and status of all Discrepancy Reports written against the software.
e. Summary and status of all software requirements deviations and waivers.
f. Summary and status of all software user notes.
g. Summary and status of all quality measures historically and for this software.
h. Definition of open work, if any.
i. Software configuration records defining the verified and validated software, including

requirements verification data (e.g., requirements verification matrix).
j. Final version of the software documentation, including the final Software Version

Description document(s).
k. Summary and status of any open software-related risks.

3.5.5 The project shall deliver to the customer the as-built documentation to support the
operations and maintenance phase of the software life cycle. [SWE-078]

22

CHAPTER 4. Supporting Software Life Cycle Requirements

Support processes typically do not happen in one life cycle phase such as requirements, design,
implementation, or test. Support processes typically occur throughout the software life cycle. For
example, typical configuration management baselines (e.g., requirements, code, product) happen
across the life cycle. Support processes are software management and engineering processes that
typically support the entire software life cycle (e.g., configuration management).

4.1 Software Configuration Management
Software configuration management establishes and maintains the integrity of the products of a
software project throughout the software life cycle. Software configuration management involves
identifying the configuration of products that are delivered to the customer and used in
development, systematically controlling changes to the configuration, and maintaining the
integrity and traceability of the configuration. Use of standard Center or organizational software
configuration management processes and procedures is encouraged where applicable.

4.1.1 The project shall develop a Software Configuration Management Plan that describes the
functions, responsibilities, and authority for the implementation of software configuration
management for the project. [SWE-079]

Note: The plan may be a part of the project configuration management plan with required content
of the plan defined in Chapter 5.

4.1.2 The project shall track and evaluate changes to software products. [SWE-080]

Note: The project can use a Software Change Request or software problem tracking system.
Software Change Requests/Problem Reports should be documented per the requirements in
Chapter 5.

4.1.3 The project shall identify the software configuration items (e.g., software documents, code,
data, scripts) and their versions to be controlled for the project. [SWE-081]

4.1.4 The project shall establish and implement procedures designating the levels of control each
identified configuration item must pass through; the persons or groups with authority to
authorize changes and to make changes at each level; and the steps to be followed to request
authorization for changes, process Change Requests, track changes, distribute changes, and
maintain past versions. [SWE-082]

4.1.5 The project shall prepare and maintain records of the configuration status of configuration
items. [SWE-083]

Note: Configuration status accounting generates and/or maintains records of the status and
contents of the software throughout the life cycle. This function keeps track of the changes and
the contents of versions and releases.

23

4.1.6 The project shall ensure that software configuration audits are performed to determine the
correct version of the configuration items and verify that they conform to the documents
that define them. [SWE-084]

4.1.7 The project shall establish and implement procedures for the storage, handling, delivery,
release, and maintenance of deliverable software products. [SWE-085]

4.2 Risk Management

Identification and management of risks provides a basis for systematically examining changing
situations over time to uncover and correct circumstances that impact the ability of the project to
meet its objectives.

4.2.1 The project shall identify, analyze, plan, track, control, communicate, and document
software risks (potential issues, hazards, threats, and vulnerabilities) in accordance with
NPR 7120.5, NASA Program and Project Management Processes and Requirements and
NPR 8000.4, Risk Management Procedural Requirements. [SWE-086]

4.3 Peer Reviews/Inspections
Peer reviews and inspections are the in-process technical examination of work products by the
supplier’s peers for the purpose of finding and eliminating defects early in the life cycle. Peer
reviews are performed following defined procedures covering the preparation for the review,
conducting the review itself, documenting results, reporting the results, and certifying the
completion criteria. Peer reviews and inspections which satisfy these features include, but are not
limited to, Fagan Inspections, Software Formal Inspections, Tom Gilb’s Software Inspections,
and Perspective Based Reading.

4.3.1 The project shall ensure peer reviews are performed for: [SWE-087]
a. Software Requirements.
b. Software Test Plans.
c. Any design and code items that the project identified for peer review according to the

software development plans.

Note: Safety and mission-success related design and code components should be peer reviewed.

4.3.2 The project shall, for each planned peer review: [SWE-088]
a. Use a checklist to evaluate the work products.
b. Use established readiness and completion criteria.
c. Track actions identified in the reviews until they are resolved.

4.3.3 The project shall, for each planned peer review, record basic measurements. [SWE-089]

Note: The requirements for the content of the Software Inspection/Peer Review Report are
defined in Chapter 5.

24

4.4 Software Measurement
Software measurement programs at multiple levels should be established to meet measurement
objectives that are derived from identified information needs and objectives. The requirements
below are designed to establish measurement programs at the project and the Mission Directorate
levels to assist in managing projects, assuring quality, and improving software engineering
practices. Project-level and Mission Directorate-level (product line) measurement programs
should be designed to meet the following high-level goals:

a. To improve future planning and cost estimation.
b. To provide realistic data for progress tracking.
c. To provide indicators of software quality.
d. To provide baseline information for future process improvement activities.

Additional measures can be defined by either the projects or the Mission Directorate, based on
any additional high-level goals they may have.

4.4.1 The project shall establish and document specific measurement objectives for their project.
[SWE-090]

4.4.2 The project shall select and record the selection of specific measures in the following areas:
[SWE-091]

a. Software progress tracking.
b. Software functionality.
c. Software quality.
d. Software requirements volatility.
e. Software characteristics.

Note: Metrics reports should be documented per the metrics report requirements of Chapter 5.

4.4.3 The project shall specify and record data collection and storage procedures for their
selected software measures and collect and store measures accordingly. [SWE-092]

Note: Data should be maintained in the NASA process asset library.

4.4.4 The project shall analyze software measurement data collected using documented project-
specified and Center/organizational analysis procedures. [SWE-093]

4.4.5 The project shall report measurement analysis results periodically and allow access to
measurement information by Center-defined organizational measurement programs.
[SWE-094]

4.4.6 Each NASA Mission Directorate shall establish its own software measurement system to
include the minimum reporting requirements in SWE-091. [SWE-095]

4.4.7 Each NASA Mission Directorate shall identify and document the specific measurement
objectives, the chosen specific measures, the collection procedures, and storage and
analysis procedures. [SWE-096]

25

4.4.8 Each NASA Mission Directorate shall report their software measurement results to the
Office of the Chief Engineer on a yearly basis. [SWE-097]

4.5 Best Practices
Successful best practices throughout the software community provide an available resource that
can lead to improved products. Ensuring an awareness of these practices can often provide
potential solutions to problems. Successful best practices also provide alternate approaches for an
individual project to consider, given its scope, domain, and goals. The intent of organizational
best practices is not to mandate the use of any specific practice, but to provide information and
examples to each project so that it can evaluate and choose those practices that it deems most
beneficial.

4.5.1 The NASA Office of the Chief Engineer shall maintain an Agencywide process asset
library of applicable best practices. [SWE-098]

Note: The repository may contain information in many forms including, but not limited to,
websites, design principles, books, periodicals, presentations, and conference descriptions.

4.5.2 Each Center shall review the contents of the process asset library to identify those practices
that may have direct applicability and value to its software activities. [SWE-099]

4.6 Training
Properly trained personnel are key to success with software engineering projects. The goal is to
maintain and advance organizational capability for training of personnel that perform software
engineering practices to effectively meet scientific and technological objectives. The Software
Training Plan should include training in the following software activities: software management,
software acquisition, software monitoring, software development, software safety and mission
assurance, and software process improvement.

4.6.1 The NASA Chief Engineer and Center training organizations shall provide and fund
training to advance software engineering practices and software acquisition. [SWE-100]

4.6.2 Each Center shall maintain and implement a Software Training Plan(s) to advance its in-
house software engineering capability and as a reference for its contractors. [SWE-101]

Note: The Software Training Plan should be documented per the Software Training Plan
requirements of Chapter 5. Centers should plan to meet or exceed the CMMI® SE/SW Maturity
Level 3.

26

CHAPTER 5. Software Documentation Requirements

Use of NASA Center and contractor formats in document deliverables will be acceptable if
required content is addressed. Documents can be combined if required content is addressed.
Specific content within these documents may not be applicable for all projects. Non-applicable
content areas will be clearly noted in project documentation. These non-applicable
documentation decisions may be reviewed by external organizations. Product documentation
should be reviewed and updated as necessary.

5.1 Software Plans

5.1.1 Software Development or Management Plan
The Software Development or Management Plan provides insight into, and a tool for monitoring,
the processes to be followed for software development, the methods to be used, the approach to
be followed for each activity, and project schedules, organization, and resources. This plan
details the system software, project documentation, project schedules, resources requirements and
constraints, and general and detailed software development activities.

5.1.1.1 The Software Development or Management Plan shall contain: [SWE-102]
a. Project organizational structure showing authority and responsibility of each

organizational unit, including external organizations (i.e., Safety and Mission
Assurance, Independent Verification and Validation (IV&V), Independent Technical
Authority (ITA), NASA Engineering and Safety Center (NESC)).

b. The classification of each of the systems and subsystems containing software as defined
in Appendix B.

c. Tailoring compliance matrix for approval by the designated ITA Warrant Authority, if
the projects has any variants, waivers or exceptions to this NPR.

d. Engineering environment (for development, operation, or maintenance, as applicable),
including test environment, library, equipment, facilities, standards, procedures, and
tools.

e. Work breakdown structure of the life cycle processes and activities, including the
software products, software services, nondeliverable items to be performed, budgets,
staffing, physical resources, software size, and schedules associated with the tasks.

f. Management of the quality characteristics of the software products or services.
g. Management of safety, security, privacy, and other critical requirements of the software

products or services.
h. Subcontractor management, including subcontractor selection and involvement

between the subcontractor and the acquirer, if any.
i. Verification and validation approach.
j. Acquirer involvement.
k. User involvement.
l. Risk management.
m.Security policy.
n. Approval required by such means as regulations, required certifications, proprietary,

usage, ownership, warranty, and licensing rights.
o. Process for scheduling, tracking, and reporting.

27

p. Training of personnel, including project unique software training needs.
q. Software life cycle model including description of software integration and

hardware/software integration processes, software delivery, and maintenance.
r. Configuration management.
s. Software documentation tree.
t. Peer review/inspection process of software work products.
u. Process for early identification of testing requirements that drive software design

decisions; e.g., special system level timing requirements/checkpoint restart.
v. Software metrics.
w. Content of software documentation to be developed on the project.

Note: Verification approach includes:
a. Identification of selected software verification procedures and criteria across the life

cycle (e.g., peer review procedures, inspection procedures, re-inspection criteria,
testing procedures).

b. Identification of selected work products to be verified (e.g., peer reviews of
requirements and test plans, peer reviews/inspections of critical code, testing code
against requirements and design).

c. Description of software verification environments that are to be established for the
project (e.g., software testing environment, system testing environment, regression
testing environment).

d. Identification of where actual software verification records and analysis of the
results will be documented (e.g., test records, peer review records, inspection
records), and where software verification corrective action will be documented.

Note: Validation approach includes:
a. Identification of selected software validation procedures and criteria across the life

cycle (e.g., prototyping, user groups, simulation, analysis, acceptance testing,
operational demonstrations).

b. Identification of selected work products to be validated (e.g., user groups reviewing
requirements and prototypes, acceptance testing of software product, operational
demonstrations of software product).

c. Description of software validation environments that are to be established for the
project (e.g., simulators for operational environment).

d. Identification of where actual software validation records and analysis of the results
will be documented (e.g., user group records, prototyping records, acceptance testing
records), and where software validation corrective action will be documented.

5.1.2 Software Configuration Management Plan
The Software Configuration Management Plan describes the functions, responsibilities, and
authority for the accomplishment and implementation of software configuration management to
be performed during the software life cycle. This plan identifies the required coordination of
software configuration management activities with other activities of the project.

5.1.2.1 The Software Configuration Management Plan shall contain: [SWE-103]
a. The project organization(s) within which Software Configuration Management is to

28

apply.
b. Responsibilities of the software configuration management organization.
c. References to the software configuration management policies and directives that apply

to the project.
d. All functions and tasks required to manage the configuration of the software, including

configuration identification, configuration control, status accounting, and configuration
audits and reviews.

e. Schedule information, which establishes the sequence and coordination for the
identified activities and for all events affecting the Plan’s implementation.

f. Resource information, which identifies the software tools, techniques, and equipment
necessary for the implementation of the activities.

g. Plan maintenance information, which identifies the activities and responsibilities
necessary to ensure continued planning during the life cycle of the project.

h. Release management and delivery.

5.1.3 Software Test Plan
The Software Test Plan describes the plans for software component level testing, software
integration testing, software qualification testing, and system qualification testing of software
systems. The plan describes the software test environment to be used for testing, identifies the
tests to be performed, and provides schedules for environment, development, and test activities.
The plan provides an overview of software testing, test schedules, and test management
procedures.

5.1.3.1 The Software Test Plan shall include: [SWE-104]
a. Test levels.
b. Test types (e.g., unit testing, software integration testing, systems integration testing,

end-to-end testing, acceptance testing, regression testing).
c. Test classes.
d. General test conditions.
e. Test progression.
f. Data recording, reduction, and analysis.
g. Test coverage (breadth and depth) or other methods for ensuring sufficiency of testing.
h. Planned tests, including items and their identifiers.
i. Test schedules.
j. Requirements traceability (or verification matrix).
k. Qualification testing environment, site, personnel, and participating organizations.

5.1.4 Software Maintenance Plan
The Software Maintenance Plan provides insight into the method, approach, responsibility, and
processes to be followed for maintenance of software and its associated documentation. For the
Software Maintenance Plan, provide separate volumes for each system element (e.g., ground
operations, flight operations, mission operations, and spacecraft).

5.1.4.1 The Software Maintenance Plan shall include: [SWE-105]
a. Plan information for the following activities:

(1) Maintenance process implementation.

29

(2) Problem and modification analysis.
(3) Modification implementation.
(4) Maintenance review/acceptance.
(5) Migration.
(6) Software Retirement.
(7) Software Assurance.

b. Specific standards, methods, tools, actions, procedures, and responsibilities associated
with the maintenance process. In addition, the following elements are included:

(1) Development and tracking of required upgrade intervals, including
implementation plan.

(2) Approach for the scheduling, implementation, and tracking of software
upgrades.

(3) Equipment and labs required for software verification and implementation.
(4) Updates to documentation for modified COTS or non-COTS software.
(5) Licensing agreements for COTS.
(6) Plan for and tracking of operational backup software.
(7) Approach for the implementation of modifications to operational software

(e.g., testing of software in development lab prior to operational use).
(8) Approach for software delivery process including distribution to facilities and

users of the software products and installation of the software in the target
environment (including, but not limited to, spacecraft, simulators, Mission
Control Center, and ground operations facilities).

(9) Approach for providing NASA access to the software version description data
(e.g., revision number, licensing agreement).

5.1.5 Software Assurance Plan
The Software Assurance Plan details the procedures, reviews, and audits required to accomplish
software assurance. The project office should coordinate, document, and gain concurrence with
the Office of Safety and Mission Assurance as to the extent and responsibilities of the assurance
and safety of the project. This will be documented into the project plans and reflected in the
assurance process.

5.1.5.1 The Software Assurance Plan(s) shall be written per NASA-STD-8739.8, NASA Software
Assurance Standard. [SWE-106]

5.1.6 Center Software Training Plan

5.1.6.1 The Center Software Training Plan shall include: [SWE-107]
a. Responsibilities.
b. Implementation.
c. Records and forms.
d. Training resources.
e. Minimum training requirements for software personnel.
f. Training class availabilities.

5.1.7 Center Software Engineering Improvement Plans

30

5.1.7.1 The Center Software Engineering Improvement Plans shall include: [SWE-108]

a. Process improvement goal(s).
b. Scope of process improvement.
c. All Center organizations responsible for the performance of mission-critical software

development, management, and acquisition.
d. The Center's tactic for phasing in improvements (e.g., domain phasing and

organizational phasing).
e. Ownership of Center Software Engineering Improvement Plan.
f. The Center's tactic for monitoring Center Software Engineering Improvement Plan

progress including responsibilities.
g. Strategies and objectives.
h. The Center's tactic for supporting the implementation of all strategies of the NASA

Software Engineering Initiative Implementation Plan.
i. Schedule.

5.2 Software Requirements and Product Data

5.2.1 Software Requirements Specification
The Software Requirements Specification details the software performance, interface, operational,
and quality assurance requirements for each CSCI.
Note: Software requirements and design specifications need not be textual, and may include
representations in rigorous specification languages, graphical representations, or specifications
suitable for requirements or design analysis tools or methodologies,

5.2.1.1 The Software Requirements Specification shall contain: [SWE-109]
a. System overview.
b. CSCI requirements.

(1) Functional requirements.
(2) Required states and modes.
(3) External interface requirements.
(4) Internal interface requirements.
(5) Internal data requirements.
(6) Adaptation requirements.
(7) Safety requirements.
(8) Performance and timing requirements.
(9) Security and privacy requirements.
(10) Environment requirements.
(11) Computer resource requirements.

(a) Computer hardware resource utilization requirements.
(b) Computer software requirements.
(c) Computer communications requirements.

(12) Software quality characteristics.
(13) Design and implementation constraints.

31

(14) Personnel-related requirements.
(15) Training-related requirements.
(16) Logistics-related requirements.
(17) Packaging requirements.
(18) Precedence and criticality of requirements.

c. Qualification provisions.
d. Requirements traceability and verification data.
e. Requirements partitioning for phased delivery.
f. Testing requirements that drive software design decisions; e.g., special system level

timing requirements/checkpoint restart.

5.2.2 Software Data Dictionary

5.2.2.1 The Software Data Dictionary shall include: [SWE-110]
a. Channelization data (e.g., bus mapping, vehicle wiring mapping, Multiplexer-

Demultiplexer hardware channelization).
b. I/O variables.
c. Rate group data.
d. Raw and calibrated sensor data.
e. Telemetry format/layout and data.
f. Data recorder format/layout and data.
g. Command definition (e.g., on-board, ground, test specific).
h. Effector command information.
i. Operational limits (e.g., maximum/minimum values, launch commit criteria

information).

5.2.3 Software Design Description
The Software Design Description describes the design of a CSCI. It describes the CSCI-wide
design decisions, the CSCI architectural design, and the detailed design needed to implement the
software.

5.2.3.1 The Software Design Description shall include: [SWE-111]
a. CSCI-wide design decisions/trade decisions.
b. CSCI architectural design.
c. CSCI decomposition and interrelationship between components.

(1) CSCI components:
(a) Description of how the software item satisfies the software requirements,

including algorithms, data structures, and functional decomposition.
(b) Software item input/output description.
(c) Static/architectural relationship of the software units.
(d) Concept of execution including data flow, control flow, and timing.
(e) Requirements traceability.
(f) CSCI’s planned utilization of computer hardware resources.

(2) Rationale for software item design decisions/trade decisions including
assumptions, limitations, safety and reliability related items/concerns or constraints in
design documentation.

32

(3) Interface design.
d. CSCI Implementation Plan.

5.2.4 Interface Design Description
The Interface Design Description describes the interface characteristics of one or more systems,
subsystems, Hardware Configuration Item (HWCI’s), CSCI’s, manual operations, or other system
components. An interface design description may describe any number of interfaces.

5.2.4.1 The Interface Design Description shall include: [SWE-112]
a. Priority assigned to the interface by the interfacing entity(ies).
b. Type of interface (i.e., real-time data transfer, storage-and-retrieval of data) to be

implemented.
c. Specification of individual data elements, format, and data content including bit-level

descriptions of data interface that the interfacing entity(ies) will provide, store, send,
access, and receive.

d. Specification of data element assemblies, format, and data content including bit-level
descriptions of data interface that the interfacing entity(ies) will provide, store, send,
access, and receive.

e. Specification of communication methods that the interfacing entity(ies) will use for the
interface.

f. Specification of protocols the interfacing entity(ies) will use for the interface.
g. Other specifications, such as physical compatibility of the interfacing entity(ies).
h. Traceability from each interfacing entity to the system or CSCI requirements addressed

by the entity’s interface design, and traceability from each system or CSCI requirement
that affects an interface.

i. Interface compatibility.

5.2.5 Software Change Request/Problem Report

5.2.5.1 The Software Change Request/Problem Report shall contain: [SWE-113]
a. Identification of the software item.
b. Description of the problem or change to enable problem resolution or justification for

the nature of the change, including: assumptions/constraints and change to correct
software error.

c. Originator of Software Change Request/Problem Report and originator’s assessment of
priority/severity.

d. Description of the corrective action taken to resolve the reported problem or analysis
and evaluation of change, including impact to safety, schedules, cost, products, and test.

e. Life cycle phase in which problem was discovered or in which change was requested.
f. Approval or disapproval of Software Change Request/Problem Report.
g. Verification of the implementation and release of modified system.
h. Date problem discovered.
i. Status of problem.

Note: The Software Change Request/Problem Report provides a means for identifying and
recording the resolution to software anomalous behavior, process noncompliance with plans and

33

standards, and deficiencies in life cycle data, or for identifying and recording the implementation
of a change or modification in a software item.

5.2.6 Software Test Procedures
The Software Test Procedures describe the test preparations, test cases, and test procedures to be
used to perform qualification testing of a CSCI or a software system or subsystem.

5.2.6.1 The Software Test Procedures shall contain: [SWE-114]
a. Test preparations, including hardware and software.
b. Test descriptions, including:

(1) Test identifier.
(2) System or CSCI requirements addressed by the test case.
(3) Prerequisite conditions.
(4) Test input.
(5) Instructions for conducting procedure.
(6) Expected test results, including criteria for evaluating results, and assumptions

and constraints.
(7) Criteria for evaluating results.

c. Requirements traceability.
d. Identification of test configuration.

5.2.7 Software User Manual
The Software User Manual defines user instructions for the software.

5.2.7.1 The Software User Manual shall contain: [SWE-115]
a. Software summary including: application, inventory, environment, organization and

overview of operation, contingencies and alternate states and modes of operation,
security and privacy, and assistance and problem reporting.

b. Access to the software: first-time user of the software, initiating a session, and stopping
and suspending work.

c. Processing reference guide: capabilities, conventions, processing procedures, related
processing, data backup, recovery from errors, malfunctions, emergencies, and
messages.

d. Assumptions, limitations, safety related items/concerns or constraints.

5.2.8 Software Version Description

The Software Version Description identifies and describes a software version consisting of one or
more CSCIs (including any open source software). The description is used to release, track, and
control software versions.

5.2.8.1 The Software Version Description shall identify and provide: [SWE-116]
a. Full identification of the system and software (i.e., numbers, titles, abbreviations,

version numbers, and release numbers).
b. Executable software (i.e., batch files, command files, data files, or other software

needed to install the software on its target computer).
c. Software life cycle data that defines the software product.

34

d. Archive and release data.
e. Instructions for building the executable software including, for example, the

instructions and data for compiling and linking and the procedures used for software
recovery, software regeneration, testing, or modification.

f. Data integrity checks for the executable, object code, and source code.
g. Software product files (any files needed to install, build, operate, and maintain the

software).

5.3 Software Report Requirements
5.3.1 Software Metrics Report
The Software Metrics Report provides data to the project for the assessment of software cost,
technical, and schedule progress. The Software Metrics Report shall contain as a minimum the
following information tracked on a CSCI basis: [SWE-117]

a. Software progress tracking measures.
b. Software functionality measures.
c. Software quality measures.
d. Software requirement volatility.
e. Software product characteristics.

Note: An example set of software progress tracking measures that meet 5.3.1.a include, but are
not limited to:
a. Software resources such as budget and effort (planned vs. actual).
b. Software development schedule tasks (e.g., milestones) (planned vs. actual).
c. Implementation status information (e.g., number of computer software units in design phase,

coded, unit tested, and integrated into computer software configuration item versus planned).
d. Test status information (e.g., number of tests developed, executed, successfully passed).
e. Number of replans/baselines performed.
Note: An example set of software functionality measures that meet 5.3.1.b include, but are not
limited to:
a. Number of requirements included in a completed build/release (planned vs. actual).
b. Function points (planned vs. actual).
c. Computer resource utilization in percentage of capacity.

Note: An example set of software quality measures that meet 5.3.1.c include, but are not limited
to:
a. Number of software Problem Reports/Change Requests (new, open, closed, severity).
b. Review of item discrepancies (open, closed, and withdrawn).
c. Number of peer reviews/software inspections (planned vs. actual).
d. Peer review information (e.g., effort, review rate, defect data).
e. Number of software audits (planned vs. actual).
f. Software audit findings information (e.g., number and classification of findings).
g. Software risks and mitigations.
h. Number of requirements verified or status of requirements validation.

35

Note: An example set of software requirement volatility measures that meet 5.3.1.d include, but
are not limited to:
a. Number of software requirements.
b. Number of software requirements changes (additions, modifications, deletions) per month.
c. Number of “to be determined” items.

Note: An example set of software product characteristics that meet 5.3.1.e include, but are not
limited to:
a. Project name.
b. Language.
c. Software domain (flight software, ground software, web application).
d. Number of source lines of code by categories (new, slightly modified, COTS) - planned vs.

actual.

To the extent information regarding 5.3.1.a through 5.3.1.e of SWE-117 is not provided, the
project will provide documented justification in the Software Metrics Report. Other information
may be provided at the supplier’s discretion to assist in evaluating the cost, technical, and
schedule performance; e.g., innovative processes and cost reduction initiatives.

5.3.2 Software Test Report
The Software Test Report is a record of the qualification testing performed on a CSCI, a software
system or subsystem, or other software-related item.

5.3.2.1 The Software Test Report shall include: [SWE-118]
a. Overview of the test results.

(1) Overall assessment of the software as demonstrated by the test results.
(2) Remaining deficiencies, limitations, or constraints detected by testing. (e.g.,

including description of the impact on software and system performance, the
impact a correction would have on software and system design, and
recommendations for correcting the deficiency, limitation, or constraint).

(3) Impact of test environment.
b. Detailed test results.

(1) Project-unique identifier of a test and test procedure(s).
(2) Summary of test results (e.g., including requirements verified).
(3) Problems encountered.
(4) Deviations from test cases/procedures.

c. Test log.
(1) Date(s), time(s), and location(s) of tests performed.
(2) Test environment, hardware, and software configurations used for each test.
(3) Date and time of each test-related activity, the identity of the individual(s) who

performed the activity, and the identities of witnesses, as applicable.
d. Rationale for decisions.

5.3.3 Software Inspection/Peer Review Report

5.3.3.1 The Software Inspection/Peer Review Report shall include: [SWE-119]

36

a. Identification information (including item being inspected, inspection type (e.g.,
requirements inspection, code inspection, etc) and inspection time and date).

b. Summary on total time expended on each inspection/peer review (including total hour
summary and time participants spent reviewing the product individually).

c. Participant information (including total number of participants and participant’s area of
expertise).

d. Total number of defects found (including the total number of major defects, total
number of minor defects, and the number of defects in each type (such as accuracy,
consistency, completeness, etc.)).

e. Inspection results summary (i.e., pass, re-inspection required).
f. Listing of all inspection defects.

37

CHAPTER 6. Tailoring, Warrant Authority, and Compliance
Measurement

This NPR provides software engineering requirements to be applied throughout NASA and its
contractor community. To accommodate the wide variety of software systems and subsystems,
application of these requirements to specific projects will be evaluated and implemented for each
project, with alternate acceptable requirements being applied where justified and approved. To
effectively and independently maintain control over the application of requirements in this NPR
and to ensure proposed variants from specific requirements are appropriately mitigated, the Office
of the Chief Engineer has established a “Warrant Authority” within NASA’s Independent
Technical Authority (ITA). Variants from requirements in this NPR are governed by the
following requirements.

6.1 Tailoring of Requirements

NASA Centers are expected to establish rigorous software engineering practices for software
developed or acquired by projects managed at those Centers. In cases where these Center
practices are formal, enforced, and meet or exceed the requirements of this NPR, the requirements
allocated to “projects” in this NPR and the data items in Chapter 5 can be replaced by designated
Center-level requirements approved by the authorized Center ITA Manager.

6.1.1 For those cases in which a Center, project, or program desires to apply specific or general
practices that do not meet or exceed the requirements of this NPR, the Center shall
recommend those alternate requirements for Agency Technical Authority approval with
appropriate justification and Center ITA Manager concurrence. [SWE-120]

6.1.2 Where approved, the Center shall document the approved alternate requirement in the
procedure controlling the development, acquisition, and/or deployment of the affected
software. [SWE-121]

6.2 Expertise of ITA Warrant Authority(s)

6.2.1 The designated ITA Warrant Authorities for this NPR for non-business and non-IT
infrastructure systems shall be approved by the NASA Chief Engineer, in coordination
with the NASA Chief Safety and Mission Assurance Officer. [SWE-122]

Note: The designated ITA Warrant Authorities for this NPR should be recognized NASA
software engineering experts.

6.2.2 The designated ITA Warrant Authorities for this NPR for business and IT-infrastructure
systems shall be approved by the NASA Chief Information Officer. [SWE-123]

38

6.3 Compliance

6.3.1 The designated ITA Warrant Authority for this NPR shall comply with Office of the Chief
Engineer’s direction for NASA Independent Technical Authority. [SWE-124]

6.3.2 Each project with software components shall maintain a compliance matrix against
requirements in this NPR including those delegated to other parties or accomplished by
contract vehicles. [SWE-125]

6.3.3 The designated ITA Warrant Authority for this NPR shall consider the following
information when assessing waivers and variants from requirements in this NPR: [SWE-
126]

a. The list of Agency projects containing software.
b. The classification of systems and subsystems containing software as defined in

Appendix B.
c. Applicable Center-level software directives that meet the intent of this NPR.
d. Applicable contractor and subcontractor software policies and procedures that meet

the intent of this NPR.
e. Potential impacts to NASA missions.

6.3.4 The designated ITA Warrant Authority for this NPR shall review and have concurrence
approval for Center defined subsets of requirements denoted by “P(Center)” in the
Requirements Mapping Matrix in Appendix D for the indicated Classes of software.
[SWE-127]

6.3.5 The designated ITA Warrant Authority shall keep records of projects and organizational
compliances, waivers, variants, and exceptions against this NPR; and submit an annual
report to the Office of Chief Engineer, Office of Safety and Mission Assurance, and the
Chief Information Officer. [SWE-128]

6.3.6 The Office of the Chief Engineer shall authorize appraisals against selected requirements in
this NPR (or ITA approved alternative set of designated Center requirements) to check
compliance. [SWE-129]

39

APPENDIX A. References

A.1 Applicable References

a. 29 U.S.C. 794d, Section 508 of the Rehabilitation Act of 1973, as amended. Specific
requirements for accessibility may be found at 36 CFR Part 1194, available at
http://www.access-board.gov/sec508/508standards.htm.

b. 40 U.S.C. 1401, et seq. Section 808 of Public Law 104-208, the Clinger-Cohen Act of 1996
[renaming, in pertinent part, the Information Technology Management Reform Act
(ITMRA)], Division E of Public Law 104-106.

c. 42 U.S.C. 2473(c)(1) of the National Aeronautics and Space Act of 1958, as amended.
d. 44 U.S.C 3501 et seq., Paperwork Reduction Act of 1994 (Public Law 104-13).
e. OMB Circular A-130, Management of Federal Information Resources.
f. NPD 1000.1, NASA Strategic Plan.
g. NPD 2091.1, Inventions Made By Government Employees.
h. NPD 2210.1, External Release of NASA Software.
i. NPD 2810.1, NASA Information Security Policy.
j. NPD 2820.1, NASA Software Policies.
k. NPD 7120.4, Program/Project Management.
l. NPR 1000.2, NASA Strategic Management Handbook.
m. NPR 1000.3, The NASA Organization.
n. NPR 2190.1, NASA Export Control Program.
o. NPR 2210.1, External Release of NASA Software.
p. NPR 3713.1, Procedures for Providing Reasonable Accommodation for Individuals with

Disabilities.
q. NPR 7120.5, NASA Program and Project Management Processes and Requirements.
r. NPR 8000.4, Risk Management Procedural Requirements.
s. NPR 8705.2, Human-Rating Requirements for Space Flight Systems.
t. NPR 8715.3, NASA Safety Manual.
u. NPR 8735.2, Management of Government Safety and Mission Assurance Surveillance

Functions for NASA Contracts.
v. NASA-STD-8739.8, NASA Software Assurance Standard.
w. NASA-STD-8719.13, Software Safety Standard.
x. NASA-GB-8719.13, NASA Software Safety Guidebook.
y. NASA Software Engineering website (http://software.nasa.gov).
z. NASA Enterprise Architecture: Volume 5, NASA To-Be Architecture, Approach to Design

and Implementation (http://www.hq.nasa.gov/office/codea/codeao/architecture.html).

40

aa. CMU/SEI-2002-TR-011, CMMI® for Systems Engineering/Software Engineering/Integrated
Product and Process Development/Supplier Sourcing, Version 1.1, Continuous
Representation.

bb. CMU/SEI-2002-TR-012 - CMMI® for Systems Engineering/Software Engineering/Integrated
Product and Process Development/Supplier Sourcing, Version 1.1, Staged Representation.

cc. IEEE 610.12-1990, IEEE Standard Glossary of Software Engineering Terminology.

A.2 Related References

a. IEEE 830, Recommended Practices for Software Requirements Specifications.
b. IEEE 1059, Guide for Software Verification and Validation Plans.
c. IEEE/EIA 12207.0, Standard for Information Technology-Software Life Cycle Processes.
d. IEEE/EIA 12207.1, Standard for Information Technology-Software Life Cycle Processes-Life

Cycle Data.
e. IEEE/EIA 12207.2, Standard for Information Technology-Software Life Cycle Processes-

Implementation Considerations.
f. CMU/SEI-93-TR-25, Key Practices of the Capability Maturity Model.
g. Continuous Risk Management Guidebook, NTIS#:AD-A319533KKG, DTIC#:AD-

A319533\6\XAB.

41

APPENDIX B. Definitions

Class A Human
Rated Software
Systems

Applies to all space flight software subsystems (ground and flight)
developed and/or operated by or for NASA to support human activity
in space and that interact with NASA human space flight systems.
Space flight system design and associated risks to humans are
evaluated over the program's life cycle, including design,
development, fabrication, processing, maintenance, launch, recovery,
and final disposal. Examples of Class A software for human rated
space flight include but are not limited to: guidance; navigation and
control; life support systems; crew escape; automated rendezvous and
docking; failure detection, isolation and recovery; and mission
operations.

Class B Non-
Human Space
Rated Software
Systems

Flight and ground software that must perform reliably in order to
accomplish primary mission objectives. Examples of Class B
software for non-human (robotic) spaceflight include, but are not
limited to, propulsion systems; power systems; guidance navigation
and control; fault protection; thermal systems; command and control
ground systems; planetary surface operations; hazard prevention;
primary instruments; or other subsystems that could cause the loss of
science return from multiple instruments.

Class C Mission
Support
Software

Flight or ground software that is necessary for the science return from
a single (non-critical) instrument or is used to analyze or process
mission data or other software for which a defect could adversely
impact attainment of some secondary mission objectives or cause
operational problems for which potential work-arounds exist.
Examples of Class C software include, but are not limited to,
software that supports prelaunch integration and test, mission data
processing and analysis, analysis software used in trend analysis and
calibration of flight engineering parameters, primary/major science
data collection and distribution systems, major Center facilities, data
acquisition and control systems, aeronautic applications, or software
employed by network operations and control (which is redundant
with systems used at tracking complexes). Class C software must be
developed carefully, but validation and verification effort is generally
less intensive than for Class B.

42

Class D
Analysis and
Distribution
Software

Non-space flight software. Software developed to perform science
data collection, storage, and distribution; or perform engineering and
hardware data analysis. A defect in Class D software may cause
rework but has no direct impact on mission objectives or system
safety. Examples of Class D software include, but are not limited to,
software tools; analysis tools, and science data collection and
distribution systems.

Class E
Development
Support
Software

Non-space flight software. Software developed to explore a design
concept; or support software or hardware development functions such
as requirements management, design, test and integration,
configuration management, documentation, or perform science
analysis. A defect in Class E software may cause rework but has no
direct impact on mission objectives or system safety. Examples of
Class E software include, but are not limited to, earth science
modeling, information only websites (non-business/information
technology); science data analysis; and low technical readiness level
research software.

Class F General
Purpose
Computing
Software
(Multi-Center
or Multi-
Program/
Project)

General purpose computing software used in support of the Agency,
multiple Centers, or multiple programs/projects, as described for the
General Purpose Infrastructure To-Be Component of the NASA
Enterprise Architecture, Volume 5 (To-Be Architecture), and for the
following portfolios: voice, wide area network, local area network,
video, data centers, application services, messaging and
collaboration, and public web. A defect in Class F software is likely
to affect the productivity of multiple users across several geographic
locations, and may possibly affect mission objectives or system
safety. Mission objectives can be cost, schedule, or technical
objectives for any work that the Agency performs. Examples of
Class F software include, but are not limited to, software in support of
the NASA-wide area network; the NASA Web portal; and
applications supporting the Agency’s Integrated Financial
Management Program, such as the time and attendance system,
Travel Manager, Business Warehouse, and E-Payroll.

43

Class G General
Purpose
Computing
Software (Single
Center or
Project)

General purpose computing software used in support of a single
Center or project, as described for locally deployed portions of the
General Purpose Infrastructure To-Be Component of the NASA
Enterprise Architecture, Volume 5 (To-Be Architecture) and for the
following portfolios: voice, local area network, video, data centers,
application services, messaging and collaboration, and public web. A
defect in Class G software is likely to affect the productivity of
multiple users in a single geographic location or workgroup, but is
unlikely to affect mission objectives or system safety. Examples of
Class G software include, but are not limited to, software for Center
custom applications such as Headquarters’ Corrective Action
Tracking System and Headquarters’ ODIN New User Request
System.

Class H:
General
Purpose
Desktop
Software

General purpose desktop software as described for the General
Purpose Infrastructure To-Be Component (Desktop Hardware &
Software Portfolio) of the NASA Enterprise Architecture, Volume 5
(NASA To-Be Architecture). This class includes software for
Wintel, Mac, and Unix desktops as well as laptops. A defect in Class
H software may affect the productivity of a single user or small group
of users but generally will not affect mission objectives or system
safety. However, a defect in desktop IT-security related software,
e.g., anti-virus software, may lead to loss of functionality and
productivity across multiple users and systems. Examples of Class H
software include, but are not limited to, desktop applications such as
Microsoft Word, Excel, and Power Point, and Adobe Acrobat.

Contracted
Software

Software created for a project by a contractor or subcontractor.
Process requirements and safety analyses may be included. This is
custom-made software, but not in-house.

Commercial-
Off-The-Shelf
(COTS)
Software

Operating systems, libraries, applications, and other software
purchased from a commercial vendor. Not customized for a
particular project. Access to source code and documentation are
often limited.

Glueware Software created to connect the off-the-shelf software/reused
software with the rest of the system. It may take the form of
“adapters” that modify interfaces or add missing functionality,
“firewalls” that isolate the off-the-shelf software, or “wrappers” that
check inputs and outputs to the off-the-shelf software and may
modify either to prevent failures.

44

Government
Off-The-Shelf
(GOTS)
Software

This refers to government-created software, usually from another
project. The software was not created by the current developers (see
software reuse). Usually, source code is included and all
documentation, including test and analysis results, is available. That
is, the government is responsible for the GOTS software to be
incorporated into another system. (Definition from source document:
NASA-GB-8719.13, NASA Software Safety Guidebook.)

Heritage See legacy.
See software reuse.

Insight Surveillance mode requiring the monitoring of customer-identified
metrics and contracted milestones. Insight is a continuum that can
range from low intensity, such as reviewing quarterly reports, to high
intensity, such as performing surveys and reviews. (Definitions from
source document: NPR 8735.2, Management of Government Safety
and Mission Assurance Surveillance Functions for NASA Contracts.)

Legacy These are usually software products (architecture, code,
requirements) written specifically for one project and then, without
prior planning during its initial development, found to be useful on
other projects.
See software reuse.

Mission Critical Item or function that must retain its operational capability to assure
mission success. (Definition from source document: NPR 8715.3,
NASA Safety Manual.)

Modified Off-
The-Shelf
(MOTS)
Software

When COTS, legacy, reuse, or heritage software is changed to a
certain degree, usually more than 10%, then it is considered
“modified.” The changes can include all or part of the software
products and may involve additions, deletions, and specific
alterations. An argument can be made that any alterations to the code
and/or design of an off-the-shelf software component constitutes
“modification;” however, the common usage allows for some
percentage of change before the off-the-shelf software is declared to
be MOTS software. This may include the changes to the application
shell and/or glueware to add or protect against certain features and
not to the off-the-shelf software system code directly.
See off-the-shelf.

Off-The-Shelf
Software

Software not developed in-house or by a contractor for the specific
project now underway. The software is general purpose or developed
for a different purpose from the current project.

45

Oversight Surveillance mode that is in line with the supplier’s processes. The
customer retains and exercises the right to concur or nonconcur with
the supplier’s decisions. Nonconcurrence must be resolved before the
supplier can proceed. Oversight is a continuum that can range from
low intensity, such as customer concurrence in reviews (e.g., PDR,
CDR), to high intensity oversight, in which the customer has day-to-
day involvement in the supplier’s decision-making process (e.g.,
hardware inspections). (Definition from source document: NPR
8735.2, Management of Government Safety and Mission Assurance
Surveillance Functions for NASA Contracts.)

Process Asset
Library

A collection of process asset holdings that can be used by an
organization or project. (Definition from source document: CMMI®
for Systems Engineering/Software Engineering/Integrated Product
and Process Development/Supplier Sourcing.)

Program The term “program” is as defined in NPR 7120.5, NASA Program
and Project Management Processes and Requirements.

Project The term “project” is as defined in NPR 7120.5, NASA
Program and Project Management Processes and
Requirements.

Reuse See software reuse.

Risk
Management

An organized, systematic decision-making process that efficiently
identifies, analyzes, plans, tracks, controls, communicates, and
documents risk to increase the likelihood of achieving
program/project goals. (Definition from source document: NPR
8735.2, Management of Government Safety and Mission Assurance
Surveillance Functions for NASA Contracts.)

Safety Critical
Function

The term “safety critical function” is as defined in NPR 8715.3,
NASA Safety Manual.

Safety Critical The term “safety critical” is as defined in NPR 8715.3, NASA Safety
Manual.

Software Computer programs, procedures, rules, and associated documentation
and data pertaining to the development and operation of a computer
system. Software includes programs and operational data . This also
includes COTS, GOTS, MOTS, reuse, auto code generated, firmware,
and open source software components.

46

Software
Engineering

The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software: that is, the
application of engineering to software (Definition from source
document: IEEE 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology.)

Software Reuse A software product developed for one use but having other uses or
one developed specifically to be usable on multiple projects or in
multiple roles on one project. Examples include, but are not limited
to, COTS products, acquirer-furnished software products, software
products in reuse libraries, and pre-existing developer software
products. Each use may include all or part of the software product
and may involve its modification. This term can be applied to any
software product (such as, requirements and architectures), not just to
software code itself. Often this is software previously written by an
in-house development team and used on a different project. GOTS
software would come under this category if it is supplied from one
government project to another government project. (Definition from
source document: NASA-GB-8719.13, NASA Software Safety
Guidebook.)

Surveillance The continual monitoring and verification of status of an entity and
analysis of records to ensure that specified requirements are being
met.
Note: Surveillance can be performed in an insight, oversight, or a
combined mode as determined by NASA using a risk-based decision
process. (Definition from source document: NPR 8735.2,
Management of Government Safety and Mission Assurance
Surveillance Functions for NASA Contracts.)

System The combination of elements that function together to
produce the capability required to meet a need. The
elements include all hardware, software, equipment,
facilities, personnel, processes, and procedures needed for
this purpose. (Definition from source document: NPR
7120.5, NASA Program and Project Management Processes
and Requirements.)

Validation Proof that the product accomplishes the intended purpose. May be
determined by a combination of test, analysis, and demonstration.
(Definition from source document: NPR 7120.5, NASA Program and
Project Management Processes and Requirements.) Note: Software
validation also includes software peer review and inspection.

47

Verification Proof of compliance with specifications. May be determined by a
combination of test, analysis, demonstration, and inspection.
(Definitions from source document: NPR 7120.5, NASA Program
and Project Management Processes and Requirements.)

Wrappers See glueware.

48

APPENDIX C. Acronyms

EMB Engineering Management Board
FDIR Failure Detection, Isolation, and Recovery
EPG Engineering Process Group
ISO International Organization for Standardization of Geneva, Switzerland
PAL Process Asset Library
CDR Critical Design Review
CIO Chief Information Office
CMM® Capability Maturity Model®
CMMI® Capability Maturity Model® Integration
CMMI®-SE/SW Capability Maturity Model® Integration for Systems Engineering and Software

Engineering
CMU Carnegie Mellon University
COTS Commercial-Off-The-Shelf
CSCI Computer Software Configuration Item
EIA Electronic Industries Alliance; subsidiary of Government Electronics and

Information Technology Association of Arlington, VA
FAR Federal Acquisition Regulation
GOTS Government-Off-The-Shelf
GPMC Governing Program Management Council
HWCI Hardware Configuration Item
I/O Input/Output
IEEE Institute of Electrical and Electronics Engineers, Standards Association of

Piscataway, NJ
ITA Independent Technical Authority
ITMRA Information Technology Management Reform Act
IV&V Independent Verification and Validation
MOTS Modified-Off-The-Shelf
NESC NASA Engineering and Safety Center
NPD NASA Policy Directive
NPR NASA Procedural Requirements
PDR Preliminary Design Review
SCAMPI Standard CMMI® Appraisal Method for Process Improvement
SEI Software Engineering Institute
SW Software
SWE Software Engineering

49

APPENDIX D. Requirements Mapping Matrix

50

51

	PREFACE
	P.1Purpose
	P.2Applicability and Scope
	P.3Authority
	P.4References
	P.5Cancellation

	CHAPTER 1. Introduction
	1.1Overview
	1.2Organizational Capability and Improvement
	1.3Hierarchy of NASA Software-Related Documents

	CHAPTER 2.Software Management Requirements
	2.1Compliance with Laws, Policies, and Requirements
	2.2Software Life Cycle Planning
	2.3Commercial, Government, and Modified Off-The-Shelf Software
	2.4Software Verification and Validation
	2.5Project Formulation Requirements
	2.6Software Contract Requirements

	CHAPTER 3.Software Engineering (Life Cycle) Requirements
	3.1Software Requirements
	3.2Software Design
	3.3Software Implementation
	3.4Software Testing
	3.5Software Operations, Maintenance, and Retirement

	CHAPTER 4.Supporting Software Life Cycle Requirements
	4.1Software Configuration Management
	4.2Risk Management
	4.3Peer Reviews/Inspections
	4.4Software Measurement
	4.5Best Practices
	4.6Training

	CHAPTER 5.Software Documentation Requirements
	5.1Software Plans
	5.2Software Requirements and Product Data
	5.3Software Report Requirements

	CHAPTER 6. Tailoring, Warrant Authority, and Compliance Measurement
	6.1Tailoring of Requirements
	6.2Expertise of ITA Warrant Authority(s)
	6.3Compliance

	APPENDIX A.References
	A.1 Applicable References
	A.2 Related References

	APPENDIX B.Definitions
	APPENDIX C.Acronyms
	APPENDIX D.Requirements Mapping Matrix

