<table>
<thead>
<tr>
<th>Rev.</th>
<th>ECO</th>
<th>Description</th>
<th>Author</th>
<th>Approved</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>32-002</td>
<td>Initial Release for comment</td>
<td>RFGoeke</td>
<td></td>
<td>1/7/05</td>
</tr>
<tr>
<td>02</td>
<td>32-003</td>
<td>Convert to 6 detectors and add Priority Packets</td>
<td>RFGoeke</td>
<td></td>
<td>2/25/05</td>
</tr>
<tr>
<td>03</td>
<td>32-008</td>
<td>Delete Priority Packets; add 6 video enables</td>
<td>RFGoeke</td>
<td></td>
<td>4/19/05</td>
</tr>
<tr>
<td>A</td>
<td>32-022</td>
<td>Initial Controlled Release</td>
<td>RFGoeke</td>
<td>RFFoster</td>
<td>5/26/05</td>
</tr>
<tr>
<td>B</td>
<td>32-028</td>
<td>Incorporate GSFC Comments</td>
<td>RFGoeke</td>
<td>RFFoster</td>
<td>6/13/05</td>
</tr>
<tr>
<td>C</td>
<td>32-082</td>
<td>Add features for science</td>
<td>RFGoeke</td>
<td></td>
<td>2/22/06</td>
</tr>
<tr>
<td>D</td>
<td>32-096</td>
<td>Dropped HLD; rearranged SS and House packets</td>
<td>RFGoeke</td>
<td></td>
<td>2/27/06</td>
</tr>
</tbody>
</table>

Spacecraft to CRaTER
Data
Interface Control Document

Dwg. No. 32-02001.01

Revision D
March 27, 2006
Table of Contents

PREFACE ... 4

1 INTRODUCTION ... 6

1.1 Scope ... 6

1.2 Bit Numbering Convention .. 6

1.3 Detector Numbering Convention ... 6

2 1553 BUS PROTOCOL ... 7

2.1 Information Transfer Formats .. 7

2.2 Mode Codes .. 7

2.3 Unused Subaddresses ... 7

2.4 Status Word Flags ... 7

2.5 Data Bus Control ... 8

2.6 Error Recovery ... 8

2.7 Data Word Order .. 8

3 COMMANDS ... 9

3.1 Packet Description .. 9

3.1.1 Primary Header Format ... 9

3.1.2 Secondary Header Format ... 9

3.2 1 Hz Reference ... 9

3.3 Command Timing .. 10

3.4 Command Application Data Format ... 10

3.5 Command Descriptions ... 11

3.5.1 Time of Next Sync Pulse .. 11

3.5.2 Command Echo .. 11

3.5.3 Global Discrete Commands ... 12

3.5.4 Video Processing Commands .. 12

3.5.5 Discriminator Accept Mask ... 12

3.5.6 Event Amplitude Discriminators ... 12

3.5.7 Electrical Cal Amplitude .. 12
4 TELEMETRY .. 13
4.1 MIL-STD-1553 Packet Description .. 13
 4.1.1 Primary Header Format ... 13
 4.1.2 Application ID Assignments ... 13
 4.1.3 Secondary Header Format .. 13
 4.1.4 Telemetry Flow Control .. 14
 4.1.5 1553 Primary Science Data Retrieval ... 14
 4.1.6 Telemetry Timing .. 14
 4.1.7 Telemetry Application Data Format .. 14
4.2 Telemetry Description ... 16
 4.2.1 Event Records ... 16
 4.2.2 Telemetry Stall Counter .. 16
 4.2.3 Singles Event Counter ... 16
 4.2.4 Event Reject Counter .. 17
 4.2.5 Total Event Counter .. 17
 4.2.6 Contents of Last Command .. 17
 4.2.7 Discrete State Indicators .. 17
 4.2.8 Command Settings .. 17
 4.2.9 28VDC Monitor ... 17
 4.2.10 Digital +5VDC Monitor .. 17
 4.2.11 Analog +5VDC Monitor .. 18
 4.2.12 Analog -5VDC Monitor .. 18
 4.2.13 +2.5VDC Reference .. 18
 4.2.14 Detector Bias Current Monitor ... 18
 4.2.15 Detector Bias Voltage Monitor ... 18
 4.2.16 Electrical Cal Voltage Monitor ... 18
 4.2.17 LLD Voltage Monitor .. 18
 4.2.18 Temperatures .. 18
 4.2.19 PRT Reference Temperature .. 18
 4.2.20 Purge Flow Rate ... 19
4.3 Data File Formats .. 19
 4.3.1 Science Data Format ... 19
 4.3.2 Housekeeping Data Format ... 19
5 TBD/TBR LIST .. 20
Preface

Revision 01 of this document is being circulated for comment. It contains a general proposal for the implementation of the experiment command and data interface. (It is derived from the SPIDR ICD.)

Revision 02 responds to the change in overall detector architecture from 1 thin and 5 thick detectors, to 3 thin/thick pairs of detectors. It adds both high and low rate calibration signals for testing telemetry performance, and further adds the ability to guarantee a telemetry allocation for particular sets of grade-coded events.

Revision 03 incorporated many comments. For the instrument team we
- Add the “Good Event” counter in secondary science. We will get this information in real time during flight, whereas the primary science delivery might well be delayed;
- Clarify what the System Reset command does;
- Separate the detector bias on/off commands for thick and thin detectors;
- Add commands to individually switch detector video chains on/off;
- Remove the packet priority scheme – s/c C&DH monitoring of secondary science can handle the functionality required to switch discriminator accept masks;
- Redo the Secondary Science and Housekeeping definitions to keep up with command changes;
- The analog housekeeping awaits detailed hardware design before we determine the final entries for the telemetry table.

Per Goddard request, the following changes are implemented:
- The command function codes have been moved from the Application ID to the Secondary Header;
- The 1 Hz clock drifts relative to GMT, so we add a few sub-second bits to guarantee that each science interval will be uniquely tagged;
- Maximum data packets per second command removed;
- The command sub-address range has been compressed;
- We increase the time-of-next-sync-pulse command to 64 bits (to include the sub-seconds) and change the secondary header of the telemetry packets to be consistent with spacecraft usage;
- The telemetry Application ID assignments will be made later by the spacecraft folks;
- The description of primary telemetry packet flow control has been expanded and now explicitly references the use of the 1553 RT status word.

Revision A is the first controlled release and incorporates GSFC comments to Rev. 03, especially the details of 1553 protocol now in Section 2. It removes the 1553 RT status word from the flow control (or not) and substitutes the use of null strings in the primary science data flow. We also added a section on 1553 data transactions for primary science to attempt to explain how CCSDS packets fit into the 1553 transaction packets. We also added an 8-bit quantity to adjust the amplitude of the electrical cal signal.

Revision B fills in the values of telemetry sub-addresses on the 1553 data bus and adds a synchronizing flag to mark the end of primary science packet retrieval. The bit assignment in the secondary command header has changed. The 1 Hz pulse is now backstopped by a free-running clock. We also added a more robust method to accomplish a hard reset.

Upon GSFC signature, they will become a mandatory member of the ECO Review Board for future revisions of this document.

Revision C adds two features requested by science: a per-detector event (“singles”) counter and a per-detector leakage current measurement. The electrical cal on/off command was separated into two separate lines, one each for high and low amplitude ranges. A restatement of what happens when the 1 Hz pulse is absent was made. Current estimates of the housekeeping conversion values were added. Finally, GSFC decided to generate their own document based, in content, entirely upon ours. We therefore removed the
signature page and demoted this document from 32-02001 to 32-02001.01; it will serve as our proposed input to theirs.

Note that the current housekeeping telemetry packet is 2 words larger than a single 1553 data transaction; we may well want to trim back to 32 words in a future revision.

Rev. D moved the Discriminator Amplitude Settings and Mask housekeeping quantities from the Housekeeping packet to the Secondary Science packet; this keeps the associated 1553 transfer to a single 32 word retrieval in each case. At the same time the High Level Discriminator function has been removed. A requirement was added that no command may be sent to the instrument within 0.1 second of the 1Hz reference pulse.
1 Introduction
The flight hardware for the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) is composed of a single assembly incorporating both radiation detector and all associated power, command, data processing, and telemetry electronics. Other ICDs control electrical (32-02002), mechanical (32-02003), and thermal (32-02004) interfaces.

1.1 Scope
This document describes the data interface between the CRaTER science instrument and the spacecraft bus. The meanings of individual bits and data words are defined, their composition into data and telemetry packets, and the timing relationships among those packets. All information necessary to define both command and telemetry dictionaries are contained herein.

1.2 Bit Numbering Convention
The following convention is used to identify each bit in an N-bit field. The first bit in the field to be transmitted (i.e. the most left justified when drawing a figure) is defined to be “Bit 0”; the following bit is defined to be “Bit 1” and so on up to “Bit N-1”. When the field is used to express a numeric value (such as a counter), the Most Significant Bit (MSB) shall be the first transmitted bit of the field. Unless otherwise noted, such values will be expressed in decimal notation within this document.

1.3 Detector Numbering Convention
The six silicon particle detectors are numbered sequentially {1 .. 6} from zenith to nadir when the instrument is on the spacecraft bus in orbit around the moon. Under the current instrument accommodation design, the instrument baseplate faces the zenith. Within the instrument the silicon detectors are mounted in pairs {1,2}, {3,4} and {5,6}; each pair consisting of a thin (150µm) and a thick (1000µm) detector. The thin detectors are located at positions {1,3,5} and the thick detectors are located at positions {2,4,6}.
2 1553 Bus Protocol

2.1 Information Transfer Formats

CRaTER shall respond to 1553 transactions on Remote Terminal (RT) address 16.

The RT shall implement the following non-broadcast message formats in accordance with 4.3.3.6 of MIL-STD-1553: BC-to-RT transfers, RT-to-BC transfers, and mode code transfers. No broadcast message formats or RT-to-RT transfer formats shall be used.

2.2 Mode Codes

The RT shall implement the following mode codes as described in MIL-STD-1553B. The list will be TBD until instrument CDR.

<table>
<thead>
<tr>
<th>T/R Bit</th>
<th>Mode Code</th>
<th>Function</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00000</td>
<td>Dynamic Bus Control</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>00001</td>
<td>Synchronize</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>00010</td>
<td>Transmit Status Word</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>00011</td>
<td>Initiate Self Test</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>00100</td>
<td>Transmitter Shutdown</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>00101</td>
<td>Override Transmitter Shutdown</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>00110</td>
<td>Inhibit Terminal Flag Bit</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>00111</td>
<td>Override Inhibit Terminal Flag Bit</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>01000</td>
<td>Reset Remote Terminal</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>10000</td>
<td>Transmit Vector Word</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>10001</td>
<td>Synchronize</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>10010</td>
<td>Transmit Last Command</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>10011</td>
<td>Transmit BIT Word</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>10100</td>
<td>Selected Transmitter Shutdown</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>10101</td>
<td>Override Selected Transmitter Shutdown</td>
<td>No</td>
</tr>
</tbody>
</table>

2.3 Unused Subaddresses

Illegal subaddresses will not be implemented by the RT. Any attempt by the Bus Controller (BC) to read an unused subaddress will result in a valid 1553 transaction, but the data will be meaningless. Any attempt by the Bus Controller (BC) to write to an unused subaddress will result in a valid 1553 transaction, but the command will have no effect on the operation or configuration of the RT.

2.4 Status Word Flags

The 1553 Status Word Flags in the RT response messages shall be used in accordance with the following table:
<table>
<thead>
<tr>
<th>Bit</th>
<th>Status Bit</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Message Error Bit</td>
<td>Active</td>
</tr>
<tr>
<td>10</td>
<td>Instrumentation Bit</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>11</td>
<td>Service Request</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>12-14</td>
<td>Reserved Status Bits</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>15</td>
<td>Broadcast Command Received</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>16</td>
<td>Busy Bit</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>17</td>
<td>Subsystem Flag</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>18</td>
<td>Dynamic Bus Control Acceptance</td>
<td>Always Logic Zero</td>
</tr>
<tr>
<td>19</td>
<td>Terminal Flag</td>
<td>Normally Logic Zero, Set to Logic One on failure of the RT's Built-in-Test (BIT).</td>
</tr>
</tbody>
</table>

2.5 Data Bus Control

Control of information transfer on the bus shall reside with the LRO Spacecraft Computer. CRaTER’s 1553 bus interface shall always be configured as a Remote Terminal (RT). The BC shall not use the Dynamic Bus Control Acceptance status word bit.

2.6 Error Recovery

The RT shall implement the word validation requirements stated in MIL-STD-1553, paragraph 4.4 and its subparagraphs. If an invalid word transfer has occurred, the bus controller shall retransmit the entire message on the standby bus. If the word transfer is still invalid the message will be flagged as failed. The bus controller then shall transmit the next message on the primary bus.

The bus controller shall exchange the primary and standby busses only via ground command. The default bus configuration upon power-on-reset will assign Bus A as the primary and Bus B as the standby. However, all other combinations of bus configurations (B-A, A-A, or B-B) may be used during testing or fault recovery.

2.7 Data Word Order

For a bus transfer, the most significant bit shall be transmitted first with the less significant bits following in descending order of value in the data word. The most significant byte is followed by the least significant byte. Spare bits and words are all set to zero.
3 Commands

3.1 Packet Description

The following describes command packets which conform to the Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telecommands (CCSDS 201.0-B-3 and CCSDS 202.0-B-2) except as noted below. These telecommand (referred to hereafter simply as “command”) packets are generated by ground software and uplinked to the spacecraft for delivery. The spacecraft C&DH maps the Application Process ID and Secondary Header value to a particular MIL-STD-1553 Remote Terminal (RT) address and sub-address and forwards only the data content of the packet to the individual instrument.

3.1.1 Primary Header Format

The format of the primary CCSDS header is as follows:

<table>
<thead>
<tr>
<th>Bit Position(s)</th>
<th>Description</th>
<th>Usage Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>Version Number</td>
<td>Static value of 0</td>
</tr>
<tr>
<td>3</td>
<td>Type</td>
<td>Value of 1 for Telecommand Packets</td>
</tr>
<tr>
<td>4</td>
<td>Secondary Header Flag</td>
<td>Value of 1 when a secondary header is present, as it is for command and telemetry packets.</td>
</tr>
<tr>
<td>5-15</td>
<td>Application Process ID</td>
<td>Value 100 (0x64) for the CRaTER instrument</td>
</tr>
<tr>
<td>16-17</td>
<td>Segmentation Flags</td>
<td>Static value of 3; no segmentation will be used</td>
</tr>
<tr>
<td>18-31</td>
<td>Sources Sequence Count</td>
<td>This counter is meant to be incremented separately for each Application ID.</td>
</tr>
<tr>
<td>32-47</td>
<td>Packet Length</td>
<td>The number of data bytes following the primary header - 1</td>
</tr>
</tbody>
</table>

3.1.2 Secondary Header Format

The Secondary Header is used by the C&DH to route the packet data to the appropriate 1553 RT Sub-Address. Note that the primary and secondary headers are not forwarded to the instrument, only the 16 or 64 bit application data. The table below shows the bit assignments:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Description</th>
<th>Usage Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
<td>Fixed value = 0</td>
</tr>
<tr>
<td>1-7</td>
<td>Command ID</td>
<td>Individual command decoding shown in Section 3.4</td>
</tr>
<tr>
<td>8-15</td>
<td>Checksum</td>
<td>Set to make XOR of all command bytes = 0xFF</td>
</tr>
</tbody>
</table>

The spacecraft will validate the checksum of each command before forwarding the application data to the instrument. If the checksum validation fails, the spacecraft will report the error and discard the command.

3.2 1 Hz Reference

A time synchronization pulse will be delivered to the instruments once each second. The leading edge will be correlated to spacecraft time to within 10 ms. These pulses delimit one second data intervals in which telemetry data is accumulated. NB: the 1Hz clock is not synchronized to GMT, and will slowly drift relative to GMT. For this reason alone we monitor the sub-seconds field of the time-of-next-sync command so that we are guaranteed a unique, incrementing time tag. In the absence of the 1Hz pulse, the instrument will “free wheel” at 0.954Hz.
3.3 **Command Timing**

Instrument commands (with the exception of Time of Next Sync Pulse, see section 3.5) shall occur no more often than once per (1 second) data interval. On the one hand, there is no minimum time requirement between commands (including the Time of Next Sync Pulse). There is, however, a requirement that no command (including the Time of Next Sync Pulse may occur within 0.1 seconds of the 1 Hz Reference Pulse.

The time of command execution is not currently defined. Commands may take effect either on receipt or at the next 1 Hz Reference Pulse (the later is preferred).

3.4 **Command Application Data Format**

There are three types of commands sent to the instrument -- spacecraft time updates, magnitude commands, and discrete bit commands -- distinguished by the least significant 5 bits of the Secondary Header. The RT Sub-Addresses are identical to the Command ID bits in the Secondary Header.
<table>
<thead>
<tr>
<th>Sub-Add</th>
<th>No. of Data Bits</th>
<th>Description</th>
<th>Default</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>64</td>
<td>Time of next sync pulse</td>
<td>(none)</td>
<td>3.5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bits 0-31 = seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bits 32-63 = sub-seconds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>Command Echo</td>
<td>(none)</td>
<td>3.5.2</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>Global Discrete Commands</td>
<td></td>
<td>3.5.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 0 = Thin Detector Bias Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 1 = Thin Detector Bias On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 2 = Thick Detector Bias Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 3 = Thick Detector Bias On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 4 = Electrical Cal Low Range Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 5 = Electrical Cal Low Range On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 6 = Electrical Cal High Range Off</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 7 = Electrical Cal High Range On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 8 = Electrical Cal Rate 2Hz</td>
<td>2Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 9 = Electrical Cal Rate 2KHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 11 = Data Test Mode</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 14 = Clear all Commands</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 15 = System Reset</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>Video Processing Commands</td>
<td></td>
<td>3.5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 0 = Detector D1 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 1 = Detector D1 Processing On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 2 = Detector D2 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 3 = Detector D2 Processing On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 4 = Detector D3 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 5 = Detector D3 Processing On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 6 = Detector D4 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 7 = Detector D4 Processing On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 8 = Detector D5 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 9 = Detector D5 Processing On</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 10 = Detector D6 Processing Off</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit 11 = Detector D6 Processing On</td>
<td>On</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>64</td>
<td>Discriminator Accept mask</td>
<td>All “1”s</td>
<td>3.5.5</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>Event Amplitude Discriminator, Thin Detectors {1,3,5}</td>
<td>128</td>
<td>3.5.6</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>Event Amplitude Discriminator, Thick Detectors {2,4,6}</td>
<td>128</td>
<td>3.5.6</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Electrical Cal Amplitude</td>
<td>0</td>
<td>3.5.7</td>
</tr>
<tr>
<td>9-30</td>
<td>16</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5 Command Descriptions

3.5.1 Time of Next Sync Pulse

This is the value of a counter maintained by the C&DH which represents, nominally, the number of seconds which have elapsed since the Mission Epoch. The value is valid on the next received 1Hz Reference Pulse (Section 0). This command shall be sent during each (1 second) data interval, at least 100 milliseconds before the Reference Pulse to which its value applies, and at least 100 milliseconds following the previous Reference Pulse.

3.5.2 Command Echo

This command has no effect within the instrument. The echo may be used for command/telemetry integrity tests on the ground and to tag science observations while on orbit (since the command is echoed into the data stream).
3.5.3 **Global Discrete Commands**

The discrete commands are used to control specific state changes within the instrument.

- Thin Detector Bias on/off controls the application of (fixed) bias voltage to the thin silicon detectors
- Thick Detector Bias on/off controls the application of (fixed) bias voltage to the thick silicon detectors
- Electrical Cal High/Low Range on/off gates an energy calibration clock signal injected into the event chains; separate control is provided for high and low amplitude ranges.
- Electrical Cal Rate selects between a low (2 Hz) rate and a high (2KHz) clock rate for calibration.
- The test mode is intended to verify internal data logic during instrument verification and is not intended for use at the orbiter level.
- Clearing all commands will result in all values or functions reverting to their default (also initial power up) state.
- A System Reset command resets all FPGA subsystems, except for the 1553 Bus Interface Command Receiver state machine. (System Reset has no effect on the external circuitry, i.e. the 1553 Bus protocol IC.)

3.5.4 **Video Processing Commands**

The discrete commands are used to gate on/off the individual video processing chains for each detector. When “off” the chains are electrically active, but the data is ignored; a noisy chain can thus be logically removed from processing and not adversely affect system dead time.

3.5.5 **Discriminator Accept Mask**

The six silicon detectors are numbered \{1 .. 6\} starting with the detector closest to the zenith window. Treating the output of the low level threshold detectors as a 6 bit number, there are 63 possible states by which a single event may be categorized. We set the corresponding bit in a lookup table to a one for each threshold state we wish to accept. For example:

- mask := 0x0000 0001 0001 0116 selects events which trigger one and only one detector threshold.
- mask := 0xFFFF FFFF FFFF FFFE accepts all events;
- mask := 0x0000 0000 0000 0000 rejects all events.

3.5.6 **Event Amplitude Discriminators**

Amplitude discrimination is applied to the energy content of the events detected by an individual detector. The Least Significant 8 bits of the command are a Low Level Discriminator (LLD), defining a limit below which events are considered invalid. The settings are applied separately to Detectors \{1,3,5\} and Detectors \{2,4,6\}. The Most Significant 8 bits are ignored.

The LLD is implemented as a hardware comparator that, if triggered by any one detector event, will cause all enabled detector chains to perform an A/D conversion.

3.5.7 **Electrical Cal Amplitude**

The electrical cal amplitude governs the magnitude of the energy calibration signal injected into the event chains; only the least 8 significant bits are used.
4 Telemetry

The following describes telemetry packets which conform to the Consultative Committee for Space Data Systems (CCSDS) Recommendations for Packet Telemetry (CCSDS 102.0-B-4) except as noted below.

4.1 MIL-STD-1553 Packet Description

The MIL-STD-1553 telemetry packets are of three separate types: a primary science packet, a secondary science packet, and a general housekeeping packet.

4.1.1 Primary Header Format

The Primary Header format for telemetry packets is identical to that described for use in telecommands (see section 3.1.1).

4.1.2 Application ID Assignments

The Application ID assignments for telemetry as follows:

<table>
<thead>
<tr>
<th>Bit Positions</th>
<th>Description</th>
<th>Application Process ID</th>
<th>RT Sub-Address</th>
<th>Usage Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-15</td>
<td>Data ID</td>
<td></td>
<td>10</td>
<td>Value = 10 for primary science block 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Value = 11 for primary science block 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>Value = 12 for primary science block 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>Value = 13 for primary science block 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>Value = 14 for primary science block 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>Value = 15 for primary science block 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>Value = 16 for primary science block 6</td>
</tr>
<tr>
<td>n/a</td>
<td></td>
<td></td>
<td>17</td>
<td>Value = 17 for primary science block end flag</td>
</tr>
<tr>
<td>120 (0x78)</td>
<td></td>
<td></td>
<td>20</td>
<td>Value = 20 for secondary science</td>
</tr>
<tr>
<td>121 (0x79)</td>
<td></td>
<td></td>
<td>21</td>
<td>Value = 21 for housekeeping</td>
</tr>
</tbody>
</table>

4.1.3 Secondary Header Format

The secondary header contains the spacecraft time valid at the leading edge of the 1 Hz pulse preceding this telemetry request (note that bit 48 must be 0 to be CCSDS compliant): Although bits 80-95 would normally contain a 16-bit sub-seconds value, we truncate that information and jam an Instrument Serial Number into this field. (This bit allocation is required to be consistent with the spacecraft utilization of the secondary header.)

If the spacecraft time is not received prior to the 1 Hz pulse, the time is zero filled. If the 1 Hz pulse fails to occur within 1.05 seconds of the previous pulse, the “1Hz not received “ bit will be set.

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Reserved; value = 0</td>
</tr>
<tr>
<td>49-79</td>
<td>Spacecraft time in seconds</td>
</tr>
<tr>
<td>80-83</td>
<td>Spacecraft time in sub-seconds</td>
</tr>
<tr>
<td>84-89</td>
<td>Reserved; value = 0</td>
</tr>
<tr>
<td>90</td>
<td>1Hz not received = 1</td>
</tr>
<tr>
<td>91-95</td>
<td>Instrument Serial Number</td>
</tr>
</tbody>
</table>
4.1.4 Telemetry Flow Control

Primary science events are collected in a buffer up to a maximum of 1200 events in a single one second interval; data collection will then stall until the next 1 second sync pulse arrives.

At the 1 second sync the data buffer containing the previous second’s data will be packaged into CCSDS packets, each event being represented in a 9 byte format, up to a maximum of 48 events per packet. The resulting 444 byte packets (6 bytes of primary header, 6 bytes of secondary header, and 432 bytes of data) are then queued for collection by the spacecraft C&DH system.

The last packet in the queue will, in general, not be the full 444 bytes in length. (In fact, it is a valid to have a single zero data length packet in the queue – when, for example, the detector bias is off.) The length field in the primary header will indicate the extent of valid data.

If the 1Hz pulse does not arrive and the system starts to “free wheel” (see para 3.2), bit 90 of the secondary header is set.

4.1.5 1553 Primary Science Data Retrieval

The 1553 interface can retrieve a maximum of 32 16-bit words per transaction. From the primary science sub-addresses it will always retrieve groups of 448 bytes -- 7 data transactions of 32 16-bit words taken sequentially from sub-addresses 10 -> 16 – followed immediately by a request for a single data word on sub-address 17. This last request signals the end of the current packet retrieval and enables the instrument to load the next CCSDS data packet into the output queue; the contents of the single word retrieved is undefined and will be discarded by the spacecraft data system. The first retrieval after the 1 second sync pulse will always receive a valid CCSDS-formatted packet, padded with null bytes to fill out the full 448 byte transaction. Subsequent retrievals will return a full 448 null byte string if a completely filled CCSDS science packet is not available.

4.1.6 Telemetry Timing

Primary science telemetry packets queries would optimally occur every 40 ms, resulting in a maximum primary science throughput of 1200 events, or 86400 data bits per second. There are no hardware restrictions on when or how often such 1553 bus queries occur, however.

Secondary science and housekeeping telemetry packets must be retrieved from the 1553 Remote Terminal in the interval between 100 and 900 milliseconds following a 1 Hz Reference Pulse.

Secondary science packets shall be read during every 1 second data interval during which primary science data is being collected.

Housekeeping packets shall be read every 16 seconds while 28VDC power is supplied to the instrument.

4.1.7 Telemetry Application Data Format

4.1.7.1 Primary Science

The event data for a single event in the primary science packet consists of a 9 byte block:
<table>
<thead>
<tr>
<th>Relative Bit Position</th>
<th>Data Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>Event Amplitude, Detector 1</td>
</tr>
<tr>
<td>12-23</td>
<td>Event Amplitude, Detector 2</td>
</tr>
<tr>
<td>24-35</td>
<td>Event Amplitude, Detector 3</td>
</tr>
<tr>
<td>36-47</td>
<td>Event Amplitude, Detector 4</td>
</tr>
<tr>
<td>48-59</td>
<td>Event Amplitude, Detector 5</td>
</tr>
<tr>
<td>60-71</td>
<td>Event Amplitude, Detector 6</td>
</tr>
</tbody>
</table>

4.1.7.2 Secondary Science

The application data contents of the secondary science packet are as follows (note that words 0-5 contain the primary and secondary packet header):

<table>
<thead>
<tr>
<th>Word in Packet</th>
<th>Relative Bit Position</th>
<th>Data Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0</td>
<td>Thin Detector Bias Voltage On = 1</td>
<td>4.2.7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Thick Detector Bias Voltage On = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Electrical Cal Low Range On = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Electrical Cal High Range On = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Electrical Cal Rate High = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Detector D1 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Detector D2 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Detector D3 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Detector D4 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Detector D5 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Detector D6 Processing Enabled = 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11-15</td>
<td>RT SubAddr of Last Command</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>Contents of Last Command</td>
<td>4.2.6</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>Event Amplitude Discriminator Setting: D1,3,5</td>
<td>4.2.8</td>
</tr>
<tr>
<td>10-13</td>
<td></td>
<td>Event Amplitude Discriminator Setting: D2,4,6</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>Detector D1 Singles Counter</td>
<td>4.2.3</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>Detector D2 Singles Counter</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>Detector D3 Singles Counter</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>Detector D4 Singles Counter</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>Detector D5 Singles Counter</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>Detector D6 Singles Counter</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>Telemetry Stall Counter</td>
<td>4.2.2</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>Event Reject Counter</td>
<td>4.2.4</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>Total Event Counter</td>
<td>4.2.5</td>
</tr>
</tbody>
</table>

The data in this packet was latched by the immediately preceding 1 Hz Reference Pulse.

4.1.7.3 Housekeeping

The application data contents of the housekeeping packet are as follows (note that words 0-5 contain the primary and secondary packet header).
4.2 Telemetry Description

4.2.1 Event Records

Each detected particle event is recorded once and only once in the data stream. Events which are considered valid – those satisfying both amplitude and discriminator mask criteria – are either packed into a primary science packet or counted by the stall counter and reported in the secondary science packet. All other events – by definition invalid – increment the Event Reject counter.

4.2.2 Telemetry Stall Counter

While processing science telemetry packets the instrument must occasionally go “off line” to provide inter-packet timing gaps, generate headers, and wait for the Orbiter C&DH to retrieve a packet from the queue. In these cases, otherwise valid events are lost. The Stall Counter records a count of all events lost under these conditions. Upon receipt of the 1 Hz Reference Pulse the counter is read out into Secondary Science and reset to zero.

4.2.3 Singles Event Counter

For each detector this counter keeps track of every incident event which triggers a fixed hardware threshold in the analog signal chain. Upon receipt of the 1 Hz Reference Pulse the counter is read out into Secondary Science and reset to zero.
4.2.4 Event Reject Counter
This counter keeps track of every incident event \textit{not} put into the data stream as a valid event because it has failed the discriminator mask criteria. Note that these events, because they are never queued for telemetry, are never counted by the Stall counter. Upon receipt of the 1 Hz Reference Pulse the counter is read out into Secondary Science and reset to zero.

4.2.5 Total Event Counter
This counter keeps track of every incident event processed by the enabled chains. (The information is, therefore, redundant with the sum of valid, reject, and stall events, but having it in the secondary science packet is convenient for in-flight monitoring.)

The Stall, Event Reject, and Total Event counters are implemented as 16 bit counters; the counters will stall at full scale and not roll over. Because all event processing – whether valid, invalid, or lost – takes the same length of time (12 µs), the Total Event counter provides an accurate dead-time correction for each 1 second data interval.

4.2.6 Contents of Last Command
In this context “Last Command” means the command received during that preceding data interval; if no command was received during that interval, these bits have a value of zero. If the last command received was a “Discriminator Accept Mask”, which has 64 bits of data content, only the least 16 significant bits are echoed.

4.2.7 Discrete State Indicators
There are ten one bit state indicators:

- Electrical Calibration High/Low Range On/Off – indicates whether the calibration clock circuitry is currently enabled.
- Electrical Calibration Rate High/Low – indicates whether the calibration signal is injected at 2KHz or 2Hz.
- Thin/Thick Detector Bias On/Off Command – indicates the state of the last detector bias command.
- Detector Processing Enable Command – indicates the state of the detector processing matrix.

4.2.8 Command Settings
The telemetry words for

- Event Amplitude Discriminator Levels, Detector 1,3,5
- Event Amplitude Discriminator Levels, Detector 2,4,6
- Discriminator Mask

are readouts of the respective registers. The values should be identical to the last command that set these registers.

4.2.9 28VDC Monitor
A value indicating the voltage of the spacecraft 28VDC bus as seen by the instrument. The nominal engineering value in volts is

\[V = K \times \text{count}, \text{ where } K = 10.1 \times 10^{-3}. \]

4.2.10 Digital +5VDC Monitor
A value indicating the voltage of the instrument regulated digital +5VDC. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } 2.00 \times 10^{-3}. \]

4.2.11 Analog +5VDC Monitor

A value indicating the voltage of the instrument regulated analog +5VDC. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } 2.00 \times 10^{-3}. \]

4.2.12 Analog -5VDC Monitor

A value indicating the voltage of the instrument regulated analog -5VDC. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } -2.01 \times 10^{-3}. \]

4.2.13 +2.5VDC Reference

A value indicating the voltage of the instrument +2.5VDC voltage reference. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } 1.00 \times 10^{-3}. \]

4.2.14 Detector Bias Current Monitor

A value indicating the DC current flowing through the reversed biased detector. The nominal engineering value in amperes is
\[I = K \times \text{count}, \text{ where } K \text{ is } \text{TBR}. \]

4.2.15 Detector Bias Voltage Monitor

A value indicating the voltage of the instrument high voltage. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } \text{TBR}. \]

4.2.16 Electrical Cal Voltage Monitor

A value indicating the magnitude of the electrical cal voltage. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } 2.00 \times 10^{-3}. \]

4.2.17 LLD Voltage Monitor

A value indicating the voltage being applied to the Low Level Discriminators. The nominal engineering value in volts is
\[V = K \times \text{count}, \text{ where } K \text{ is } 1.00 \times 10^{-3}. \]

4.2.18 Temperatures

A value indicating the temperature of a particular location is given by
\[T \text{ (in Kelvin)} = \text{VAP} - 2.73 - K \times \text{count}, \]
\[\text{where } \text{VAP} \text{ is the value of the analog +5VDC and } K \text{ is } 0.100. \]

Instrument temperature is measured by biasing an AD590 temperature transducer with a 10.0K resistor to the analog +5VDC. This yields a scale factor of 10.0 mv/C.

4.2.19 PRT Reference Temperature

A value indicating the temperature of the spacecraft-provided PRT mounted within the instrument. This measurement is only valid during ground test when a special test connector is used. The temperature is given by
\[T \text{ (in C)} = 0.1299 \times (4 \times \text{count} - 10^3) / (5 \times 10^{-3} \times \text{count}). \]

This equation is valid for a 2K PRT with a temperature coefficient of 0.00385 ohm/ohm/C. The scale factor is approximately 0.21C/LSB.
4.2.20 Purge Flow Rate
This will be implemented as a differential thermistor and calibrated to numbers of 20% accuracy after initial assembly. The curve is, therefore, TBD.

4.3 Data File Formats
The LRO spacecraft will store CRaTER data in files on the spacecraft data recorder in a subdirectory called “SSR/CRATER/”. There will be two files open at the same time, one for science data and one for housekeeping data. Prior to starting CRaTER data acquisition, the spacecraft will open the data files and write a 64 byte LRO standard file header data. The format of the header is described in the C&DH Flight Software User’s Guide (582-2006-0009). As new data packets are received, the Spacecraft will write them to the files in the formats described below (sections 4.3.1 and 4.3.2). When the science file reaches a pre-defined maximum size, the spacecraft will close both files, open new files, and write another file header. New files can also be started by ground command.

4.3.1 Science Data Format
The science file will contain both primary and secondary science data. Both types of science data will be stored in the form of CCSDS packets, exactly as they are received from the instrument. For primary science packets, the spacecraft will truncate the data to the length indicated in the packet primary header. Secondary science packets are always the same size. There will be no sync markers or fill data inserted in between the CCSDS packets.

4.3.2 Housekeeping Data Format
The housekeeping file will contain only CRaTER housekeeping data. The housekeeping data will be stored in the form of CCSDS packets, exactly as it is received from the instrument. There will be no sync markers or fill data inserted in between the CCSDS packets.
5 TBD/TBR List

<table>
<thead>
<tr>
<th>Para. Number</th>
<th>Subject</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>1553 Mode Codes</td>
<td>MIT</td>
</tr>
<tr>
<td>4.2.13</td>
<td>Detector Bias Current monitor</td>
<td>MIT</td>
</tr>
<tr>
<td>4.2.15</td>
<td>Detector Bias Voltage monitor</td>
<td>MIT</td>
</tr>
<tr>
<td>4.2.20</td>
<td>Purge Rate telemetry monitor</td>
<td>MIT</td>
</tr>
</tbody>
</table>