Lunar Reconnaissance Orbiter Project

LRO Mission Operations Test Plan

August 9, 2007
CM FOREWORD

This document is a Lunar Reconnaissance Orbiter (LRO) Project Configuration Management (CM)-controlled document. Changes to this document require prior approval of the applicable Configuration Control Board (CCB) Chairperson or designee. Proposed changes shall be submitted to the LRO CM Office (CMO), along with supportive material justifying the proposed change. Changes to this document will be made by complete revision.

Questions or comments concerning this document should be addressed to:

LRO Configuration Management Office
Mail Stop 431
Goddard Space Flight Center
Greenbelt, Maryland 20771

CHECK WITH LRO DATABASE AT:
https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
Signature Page

Prepared by:

_________________________ __________________
Richard Saylor Jr. Date
Ground System & Operations Lead
HTSI/Code 444

Reviewed by:

_________________________ __________________
Jack Murphy Date
Mission Operations Team Lead
HTSI/Code 444

Approved by:

_________________________ __________________
Dave Everett Date
Mission System Engineer
NASA/GSFC Code 595

CHECK WITH LRO DATABASE AT:
https://lunargin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
LUNAR RECONNAISSANCE ORBITER PROJECT

DOCUMENT CHANGE RECORD

<table>
<thead>
<tr>
<th>REV LEVEL</th>
<th>DESCRIPTION OF CHANGE</th>
<th>APPROVED BY</th>
<th>DATE APPROVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Baseline version of Document (Initial Release)</td>
<td>D. Everett</td>
<td>TBD</td>
</tr>
</tbody>
</table>

CHECK WITH LRO DATABASE AT:
https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
List of TBDs/TBRs

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Location</th>
<th>Summary</th>
<th>Ind./Org.</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHECK WITH LRO DATABASE AT:
https://lunargin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1 Mission Simulations Overview</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2 Operations Readiness Test Overview</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 Mission Simulations</td>
<td>2-3</td>
</tr>
<tr>
<td>2.1 Mission Simulation Approach</td>
<td>2-3</td>
</tr>
<tr>
<td>2.2 Simulation Schedule</td>
<td>2-4</td>
</tr>
<tr>
<td>2.3 Simulation Results</td>
<td>2-4</td>
</tr>
<tr>
<td>3.0 LRO Operations Readiness Test</td>
<td>3-5</td>
</tr>
<tr>
<td>3.1 ORT Test Details</td>
<td>3-5</td>
</tr>
<tr>
<td>3.2 ORT Planning Approach</td>
<td>3-9</td>
</tr>
<tr>
<td>3.3 Simulation Schedule</td>
<td>3-10</td>
</tr>
<tr>
<td>3.4 ORT Results</td>
<td>3-10</td>
</tr>
<tr>
<td>Appendix A. Abbreviations and Acronyms</td>
<td>A-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure

Page

LIST OF TABLES

Table

Page

Table 2-1: Mission Operations Simulation Test Matrix ... 2-3
Table 3-1: LRO Operations Readiness Test Matrix ... 3-5
Table 3-2: Individual ORT Objectives ... 3-6

iii

CHECK WITH LRO DATABASE AT:
https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
1.0 INTRODUCTION

This document will describe the overall approach and plan for mission operations testing. The test described within this document will primarily be used for operations training, system verification, procedure verification, and maintain operations proficiency. This document will not contain information on mission rehearsals. Mission Rehearsal details are captured in a separate document, LRO Mission Rehearsal Test Plan (431-PLAN-000402).

There are two types of mission operation tests that will be described within this document. The first type is mission simulations and the second type is Operations Readiness Tests (ORTs).

1.1 MISSION SIMULATIONS OVERVIEW

Mission Simulations is a term that describes a large variety of operations testing. In general, mission simulations will involve the entire mission elements and components, but not necessarily at the same time. The primary goals of mission simulations are:

1. Verify operations timeline
2. Execute and verify operations procedures and scripts
3. Verify ground system configuration and operations concepts
4. Perform stress testing on hardware and software components
5. Provide training opportunities for the Mission Operations Team (MOT) and mission engineering team.

Mission simulations will be performed up through launch. Individual simulations are identified within this document. A simulation test will range from a few hours to several days, the duration is determined by the goals and mission time period.

Mission simulations are the natural complement to mission rehearsals. Mission simulations are similar to the mission rehearsals but generally require less time to prepare and execute. Simulations are also generally more focused on particular areas of the operations concept, but there are some simulations that will cover large portions of the mission timeline. Another difference between simulations and rehearsals are anomalies, the simulations tend to focus on following the nominal timeline, verifying the timing and sequence of activities. This is sometime difficult to verify during rehearsals since rehearsals contain ground and flight segment anomalies.

1.2 OPERATIONS READINESS TEST OVERVIEW

ORTs main purpose is to maintain operator test proficiency and to re-verify configuration after formal mission readiness testing is complete. ORT's are executed between different ground elements and generally involve data flows using a test file. The primary participates in ORTs are:
Individual ORTs will typically involve just one interface. These are not meant to serve as end-to-end tests. By limiting ORTs to a single interface, it allows these tests to be schedule often and the test durations are reduced. A typical ORT will generally last between 1-2 hours.

For all ORTs, the MOC is involved and the MOT at the MOC executes the test according to the ORT plan.
2.0 MISSION SIMULATIONS

A mission simulation matrix was developed to identify the different simulations being planned for LRO. The matrix identifies the simulation, brief description, and required participants for the test. The simulation matrix is illustrated in Table 2-1.

Table 2-1: Mission Operations Simulation Test Matrix

<table>
<thead>
<tr>
<th>Test #</th>
<th>Test Title</th>
<th>Test Duration</th>
<th>Shift (Yes/No)</th>
<th>Test Platform</th>
<th>Required Participates</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRO-SM-01</td>
<td>Daily Operations</td>
<td>9 hours</td>
<td>No</td>
<td>Ops Sim</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-02</td>
<td>Daily Operations w/SCs</td>
<td>12 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-03</td>
<td>Live-in-the-Life</td>
<td>12 hours</td>
<td>No</td>
<td>Trainer</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-04</td>
<td>LOI Timeline</td>
<td>4 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-05</td>
<td>Early Mission Timeline</td>
<td>8 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-06</td>
<td>Instrument Activation</td>
<td>12 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-07</td>
<td>Extended Early Mission Sim</td>
<td>5 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-08</td>
<td>Extended Nominal Operations</td>
<td>4 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-09</td>
<td>Monthly SK-Calibrations</td>
<td>10 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-10</td>
<td>Spacecraft Commissioning #1</td>
<td>6 hours</td>
<td>No</td>
<td>Data Files</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-11</td>
<td>Spacecraft Commissioning #2</td>
<td>8 hours</td>
<td>No</td>
<td>Data Files</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-12</td>
<td>Spacecraft Commissioning #3</td>
<td>8 hours</td>
<td>No</td>
<td>Data Files</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-13</td>
<td>Initial Acquisition</td>
<td>2 hours</td>
<td>No</td>
<td>Data Files</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-14</td>
<td>Extended Daily Operations #2</td>
<td>4 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-15</td>
<td>Extended Early Mission Sim #2</td>
<td>5 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-16</td>
<td>Mini-RF Operations</td>
<td>8 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-17</td>
<td>Yaw Flip Maneuvers</td>
<td>4 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-18</td>
<td>Contingency Simulation #1</td>
<td>6 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-19</td>
<td>Contingency Simulation #2</td>
<td>8 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-20</td>
<td>Contingency Simulation #3</td>
<td>9 hours</td>
<td>No</td>
<td>Orbiter</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-21</td>
<td>Contingency Simulation #4</td>
<td>8 hours</td>
<td>No</td>
<td>Orbiter</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-22</td>
<td>Instrument Calibration Sim</td>
<td>12 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X</td>
</tr>
<tr>
<td>LRO-SM-23</td>
<td>LOI Simulation</td>
<td>12 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-24</td>
<td>LOA Simulation</td>
<td>12 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-25</td>
<td>LOI Contingency #1</td>
<td>6 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-26</td>
<td>LOI Contingency #2</td>
<td>6 hours</td>
<td>No</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-27</td>
<td>LOI Contingency #3</td>
<td>8 hours</td>
<td>No</td>
<td>Orbiter</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-28</td>
<td>LOI Contingency #4</td>
<td>8 hours</td>
<td>No</td>
<td>Orbiter</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-29</td>
<td>Nominal Operations</td>
<td>3 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
<tr>
<td>LRO-SM-30</td>
<td>Extended Early Mission Sim #3</td>
<td>4 days</td>
<td>Yes</td>
<td>FlatSat</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Estimated Simulation Test Time: 804 hours

2.1 MISSION SIMULATION APPROACH

The general timelines and plans for each simulation will follow the mission concept of operations and detailed timelines. Before each simulation, a general briefing message will be generated that captures any unique items planned for the simulations. The message will be sent to all simulation participants. It is the responsibility of either the system team or GS&O lead that preparations are ready for each test.

CHECK WITH LRO DATABASE AT: https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
2.2 SIMULATION SCHEDULE

All mission simulations will occur after the MOC receives the launch capable software release. The actual dates for each simulation will be maintained in the GS&O Integrated Schedule. Current plan has operation simulations starting in January 2008. As the orbiter and FlatSat schedule continues to firm up, individual dates will be selected for each mission simulation. The earlier simulations will be primarily for preparing for mission rehearsals.

2.3 SIMULATION RESULTS

Following each mission simulation, a test result report will be written and submitted to the project library. The test report will contain the following information:

- Main objectives and brief description of the test
- Objectives accomplished
- List of issues or DRs discovered during the test
- Lessons Learn that should be applied to future tests and rehearsals
- Test Participants
- Test hours

The test report will be written by the test director for each simulation. Results from each simulation will be compiled and summarized periodically during monthly status reports and at the Flight Operations Readiness Review (FORR).
3.0 LRO OPERATIONS READINESS TEST

An Operations Readiness Test matrix was developed to identify the nominal plan. Based on the results of each ORT, the baseline plan will be evaluated and additional ORTs may be scheduled. The tests identified in Table 3-1 illustrates the minimum tests being planned.

Table 3-1: LRO Operations Readiness Test Matrix

<table>
<thead>
<tr>
<th>LRO Operations Readiness Test Matrix</th>
<th>Matrix Version: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test #</td>
<td>Test Title</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>LRO-ORT-01</td>
<td>MOC-USN #1</td>
</tr>
<tr>
<td>LRO-ORT-02</td>
<td>MOC-DSN #1</td>
</tr>
<tr>
<td>LRO-ORT-03</td>
<td>MOC-WS1 #1</td>
</tr>
<tr>
<td>LRO-ORT-04</td>
<td>MOC-SN #1</td>
</tr>
<tr>
<td>LRO-ORT-05</td>
<td>MOC-SN #2</td>
</tr>
<tr>
<td>LRO-ORT-06</td>
<td>MOC-SN #3</td>
</tr>
<tr>
<td>LRO-ORT-07</td>
<td>MOC-SOC #1</td>
</tr>
<tr>
<td>LRO-ORT-08</td>
<td>MOC-SOC #2</td>
</tr>
<tr>
<td>LRO-ORT-09</td>
<td>MOC-USN #2</td>
</tr>
<tr>
<td>LRO-ORT-10</td>
<td>MOC-DSN #2</td>
</tr>
<tr>
<td>LRO-ORT-11</td>
<td>MOC-WS1 #2</td>
</tr>
<tr>
<td>LRO-ORT-12</td>
<td>MOC-USN #3</td>
</tr>
<tr>
<td>LRO-ORT-13</td>
<td>MOC-DSN #3</td>
</tr>
<tr>
<td>LRO-ORT-14</td>
<td>MOC-WS1 #3</td>
</tr>
<tr>
<td>LRO-ORT-15</td>
<td>MOC-USN #4</td>
</tr>
<tr>
<td>LRO-ORT-16</td>
<td>MOC-DSN #4</td>
</tr>
<tr>
<td>LRO-ORT-17</td>
<td>MOC-WS1 #4</td>
</tr>
</tbody>
</table>

- Estimated ORT Test Hours: 36 hours

3.1 ORT TEST DETAILS

An initial list of objectives for each ORT has been identified and illustrated in Table 3-2. Prior to each ORT, the objectives will be reviewed and modified based on previous ORT results.
Table 3-2: Individual ORT Objectives

<table>
<thead>
<tr>
<th>ORT Test ID</th>
<th>Test Objectives</th>
</tr>
</thead>
</table>
| LRO-ORT-01 | - Data File Required: VC0, VC1 frames
- MOT perform Pre-Pass Briefing
- Establish Telemetry, Command and Status Packet Connections
- Flow Real-Time VC0 & VC1 data
- MOC Receives and Displays VC0
- MOC Processes VC1 CFDP files
- MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-02 | - Data File Required: VC0, VC1 frames
- MOT perform Pre-Pass Briefing
- Establish Telemetry, Command and Status Packet Connections
- Flow Real-Time VC0 & VC1 data
- MOC Receives and Displays VC0
- MOC Processes VC1 CFDP files
- MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-03 | - Data File Required:
 - VC0, VC1 frames (S-Band)
 - VC2, VC3 frames (Ka-Band)
- MOT perform Pre-Pass Briefing
- Establish Telemetry, Command and Status Packet Connections
- Flow Real-Time VC0 & VC1 data
- MOC Receives and Displays VC0
- MOC Processes VC1 CFDP files
- MOC performs real-time commanding – Stations verifies receipt of commands.
- WS1 flows real-time VC2 & VC3 to MUE
- Station DPS processes Ka-Band files and forwards CFDP PDUs and data files to the MOC. |
| LRO-ORT-04 | - Data File Required: VC0 frames
- MOT perform Pre-Pass Briefing
- Establish Telemetry and Command connections
- Flow Real-Time VC0 data
- MOC Receives and Displays VC0
- MOC performs real-time commanding – Stations verifies receipt of commands.
- Perform handover activities |

CHECK WITH LRO DATABASE AT:
https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
<table>
<thead>
<tr>
<th>ORT Test ID</th>
<th>Test Objectives</th>
</tr>
</thead>
</table>
| LRO-ORT-05 | Data File Required: VC0 frames
MOT perform Pre-Pass Briefing
Establish Telemetry and Command connections
Flow Real-Time VC0 data
MOC Receives and Displays VC0
MOC performs real-time commanding – Stations verifies receipt of commands.
Perform handover activities |
| LRO-ORT-06 | Data File Required: VC0 frames
MOT perform Pre-Pass Briefing
Establish Telemetry and Command connections
Flow Real-Time VC0 data
MOC Receives and Displays VC0
MOC performs real-time commanding – Stations verifies receipt of commands.
Perform handover activities |
| LRO-ORT-07 | Data File Required (All from Flatsat)
Generate data files on Flatsat
Forward FDF products to SOCs
MOC commands Flatsat and dumps Stored Files
Files are forwarded to SOCs |
| LRO-ORT-08 | Data File Required (All from Flatsat)
Generate data files on Flatsat
Forward FDF products to SOCs
MOC commands Flatsat and dumps Stored Files
Files are forwarded to SOCs |
| LRO-ORT-09 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-10 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
<table>
<thead>
<tr>
<th>ORT Test ID</th>
<th>Test Objectives</th>
</tr>
</thead>
</table>
| LRO-ORT-11 | Data File Required:
• VC0, VC1 frames (S-Band)
• VC2, VC3 frames (Ka-Band)
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands.
WS1 flows real-time VC2 & VC3 to MUE
Station DPS processes Ka-Band files and forwards CFDP PDUs and data files to the MOC. |
| LRO-ORT-12 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-13 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-14 | Data File Required:
• VC0, VC1 frames (S-Band)
• VC2, VC3 frames (Ka-Band)
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands.
WS1 flows real-time VC2 & VC3 to MUE
Station DPS processes Ka-Band files and forwards CFDP PDUs and data files to the MOC. |
ORT Test ID

<table>
<thead>
<tr>
<th>ORT Test ID</th>
<th>Test Objectives</th>
</tr>
</thead>
</table>
| LRO-ORT-15 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-16 | Data File Required: VC0, VC1 frames
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands. |
| LRO-ORT-17 | Data File Required:
• VC0, VC1 frames (S-Band)
• VC2, VC3 frames (Ka-Band)
MOT perform Pre-Pass Briefing
Establish Telemetry, Command and Status Packet Connections
Flow Real-Time VC0 & VC1 data
MOC Receives and Displays VC0
MOC Processes VC1 CFDP files
MOC performs real-time commanding – Stations verifies receipt of commands.
WS1 flows real-time VC2 & VC3 to MUE
Station DPS processes Ka-Band files and forwards CFDP PDUs and data files to the MOC. |

3.2 ORT PLANNING APPROACH

Majority of the ORT s are designed to test the MOC with the ground network interfaces. For these tests, the GS&O team will coordinate and develop test briefing messages with the GSFC Network Operations Management (NOM). The NOM will be responsible for distributing the briefing messages and coordinating with each network.

For ORT s that include the SOCs, the GS&O team will generate the test briefing message and coordinate the detail plans with the SOCs. There are limited ORT s with the SOCs and FDF mostly since these elements and teams participate in mission simulations and rehearsals.

CHECK WITH LRO DATABASE AT:
https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.
3.3 SIMULATION SCHEDULE

All mission ORTs will occur after mission readiness testing is complete. In general, all ORTs will be performed within the last two months of the mission. The actual dates for each ORT will be maintained in the GS&O Integrated Schedule. The current schedule and changes to test dates will be highlighted at the Bi-Weekly GS&O Status Meetings.

3.4 ORT RESULTS

Following each ORT, a summary report will be written and submitted to the project library. The report will contain the following information:

- Main objectives and brief description of the test
- Objectives accomplished
- List of issues or DRs discovered during the test
- Lessons Learn that should be applied to future tests
- Test Participants
- Test hours

The test report will be written by the test director for each simulation.
Appendix A. Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation/Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCB</td>
<td>Configuration Control Board</td>
</tr>
<tr>
<td>CFDP</td>
<td>CCSDS File Delivery Protocol</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>CMO</td>
<td>Configuration Management Office</td>
</tr>
<tr>
<td>DPS</td>
<td>Data Processing System</td>
</tr>
<tr>
<td>DR</td>
<td>Discrepancy Report</td>
</tr>
<tr>
<td>DSN</td>
<td>Deep Space Network</td>
</tr>
<tr>
<td>FDF</td>
<td>Flight Dynamics Facility</td>
</tr>
<tr>
<td>FORR</td>
<td>Flight Operations Readiness Review</td>
</tr>
<tr>
<td>GS&O</td>
<td>Ground System & Operations</td>
</tr>
<tr>
<td>LOI</td>
<td>Lunar Orbit Insertion</td>
</tr>
<tr>
<td>LRO</td>
<td>Lunar Reconnaissance Orbiter</td>
</tr>
<tr>
<td>MOC</td>
<td>Mission Operations Center</td>
</tr>
<tr>
<td>MOT</td>
<td>Mission Operations Team</td>
</tr>
<tr>
<td>MUE</td>
<td>Mission Unique Equipment</td>
</tr>
<tr>
<td>NOM</td>
<td>Network Operations Manager</td>
</tr>
<tr>
<td>ORT</td>
<td>Operations Readiness Test</td>
</tr>
<tr>
<td>PDU</td>
<td>Packet Data Unit</td>
</tr>
<tr>
<td>SK</td>
<td>Station-Keeping</td>
</tr>
<tr>
<td>SN</td>
<td>Space Network</td>
</tr>
<tr>
<td>SOC</td>
<td>Science Operations Center</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TBR</td>
<td>To Be Resolved</td>
</tr>
<tr>
<td>USN</td>
<td>Universal Space Network</td>
</tr>
<tr>
<td>VC</td>
<td>Virtual Channel</td>
</tr>
</tbody>
</table>

CHECK WITH LRO DATABASE AT: https://lunarngin.gsfc.nasa.gov
TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE.