Lunar Reconnaissance Orbiter
Cosmic Ray Telescope for the Effects of Radiation

CRaTER Standard Product
Data Record and Archive Volume
Software Interface Specification

Document 32–01211
Revision C
November 15, 2007

Prepared by

Peter G. Ford
MIT Kavli Institute
Cambridge, MA 02139, USA

Steven P. Joy
University of California
Los Angeles, CA 90095-1567, USA
Lunar Reconnaissance Orbiter
Cosmic Ray Telescope for the Effects of Radiation

CRaTER Standard Product
Data Record and Archive Volume
Software Interface Specification

Release C
November 15, 2007

Approved:

______________________________ ______________________
Harlan Spence Date
CRaTER Principal Investigator

______________________________ ______________________
Raymond Walker Date
PDS PPI Node Manager

Concurrence:

______________________________ ______________________
Stan Scott Date
LRO Data Engineer
Table of Contents

1 Preface ...1
 1.1 Distribution list ...1
 1.2 Document change log ...1
 1.3 TBD items ..2
 1.4 Abbreviations ..2
 1.5 Glossary ..3

2 Introduction ..4
 2.1 SIS content overview ...4
 2.2 CRaTER scientific overview ..4
 2.2.1 Scientific objectives ...5
 2.2.2 Radiation ..5
 2.3 CRaTER Data Sets ..6
 2.3.1 Input Data Files ..7
 2.4 Pipeline Processing ...8
 2.5 Scope of this document ...9
 2.6 Applicable Documents ...9
 2.7 Audience ...9

3 Archive volume generation ...10
 3.1 Data transfer methods and delivery schedule .. 10
 3.2 Data validation ..11
 3.3 Data product and archive volume size estimates ..11
 3.4 Backups and duplicates ...12
 3.5 Labeling and identification ..13

4 Archive volume contents ...14
 4.1 Root directory ...14
 4.2 BROWSE directory ...15
 4.3 CALIB directory ...15
 4.4 CATALOG directory ...15
 4.5 DATA directory ...16
 4.5.1 Contents ...16
 4.5.2 Subdirectory structure..17
 4.5.3 Required files ...17
 4.5.4 The yyyy/yyyyddd subdirectory ..17
 4.6 DOCUMENT directory ...18
 4.7 EXTRAS directory ...19
 4.8 INDEX directory ..20
 4.9 LABEL directory ...20
 4.10 SOFTWARE directory ..21

5 Archive volume format ..22
 5.1 Volume format ..22
 5.2 File formats ...22
 5.2.1 Document files ...22
5.2.2 Tabular files ... 22
5.2.3 PDS labels .. 23
5.2.4 Catalog files ... 24
5.2.5 Index files ... 24
5.2.6 Level 0 data files .. 25
5.2.7 Level 1 data files .. 28
5.2.8 Level 2 data files .. 29

Appendix A Support staff and cognizant persons...32

Appendix B PDS label files..33
B.1 Level 0 Primary Science Data Label File .. 33
B.2 Level 0 Secondary Science Data Label File ... 34
B.3 Level 0 Housekeeping Data Label File ... 35
B.4 Level 1 Primary Science Data Label File .. 36
B.5 Level 1 Secondary Science Data Label File ... 37
B.6 Level 1 Housekeeping Data Label File .. 38
B.7 Level 2 Primary Science Data Label File .. 39
B.8 Level 2 Secondary Science Data Label File ... 40
B.9 Level 2 Housekeeping Data Label File .. 41

Appendix C Level 0 data record formats...42
C.1 Level 0 64-byte Binary File Header Record (LROHDR.FMT) .. 42
C.2 Level 0 Binary Record Header (CRAT_L0_HDR.FMT) .. 43
C.3 Level 0 Primary Science Record (CRAT_L0_PRI.FMT) .. 46
C.4 Level 0 Secondary Science Record (CRAT_L0_SEC.FMT) 47
C.5 Level 0 Housekeeping Record (CRAT_L0_HK.FMT) ... 50

Appendix D Level 1 data record formats...56
D.1 Level 1 Primary Science Record (CRAT_L1_PRI.FMT) .. 56
D.2 Level 1 Secondary Science Record (CRAT_L1_SEC.FMT) 57
D.3 Level 1 Housekeeping Record (CRAT_L1_HK.FMT) .. 60

Appendix E Level 2 data record formats...65
E.1 Level 2 Primary Science Record (CRAT_L2_PRI.FMT) .. 65
E.2 Level 2 Secondary Science Record (CRAT_L2_SEC.FMT) 66
E.3 Level 2 Housekeeping Record (CRAT_L2_HK.FMT) .. 72

List of Figures
Figure 1: Duplication and dissemination of CRaTER standard archive volumes 12
Figure 2: Archive volume directory structure ... 14
List of Tables

Table 1: Distribution list ...1
Table 2: Document change log ..1
Table 3: List of TBD items ...1
Table 4: Abbreviations and their meaning ...2
Table 5: Instrument design characteristics ...4
Table 6: Data Set Names and Contents ...6
Table 7: Raw Data Products ...7
Table 8: Ancillary Data Products ...7
Table 9: Data delivery schedule ...10
Table 10: Data product size and archive volume production rate ..11
Table 11: PDS Data Set Name Assignments ..13
Table 12: Root directory contents ...14
Table 13: BROWSE directory contents ...15
Table 14: CALIB directory contents ...15
Table 15: CATALOG directory contents ...15
Table 16: DATA directory contents ..17
Table 17: DATA/yyyy/yyyyddd directory contents ..17
Table 18: DOCUMENT directory contents ...18
Table 19: EXTRAS subdirectory contents ...19
Table 20: EXTRAS/yyyyd00 subdirectory contents ..19
Table 21: INDEX directory contents ..20
Table 22: LABEL directory contents ..20
Table 23: SOFTWARE directory contents ..21
Table 24: Format of index files ...24
Table 25: Format of Level 0 binary file header records ...25
Table 26: Format of Level 0 primary science data file records ...25
Table 27: Format of Level 0 secondary science data file records ..25
Table 28: Format of Level 0 housekeeping data file records ..26
Table 29: Format of Level 0 record header structure ...27
Table 30: Format of Level 1 primary science data file records ...28
Table 31: Format of Level 1 secondary science data file records ..28
Table 32: Format of Level 1 housekeeping data file records ..29
Table 33: Format of Level 2 primary science data file records ...30
Table 34: Format of Level 2 secondary science data file records ..30
Table 35: Format of Level 2 housekeeping data file records ..31
Table 36: Archive collection support staff ...32
1 Preface

This document describes the format and content of the Lunar Reconnaissance Orbiter (LRO) Cosmic Ray Telescope for the Effects of Radiation (CRaTER) Standard Product Data Record archive.

1.1 Distribution list

Table 1: Distribution list

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charles Acton</td>
<td>JPL/PDS/NAIF</td>
<td>Charles.Acton@jpl.nasa.gov</td>
</tr>
<tr>
<td>Arlin Bartels</td>
<td>GSFC/LRO</td>
<td>Arlin.Bartels@nasa.gov</td>
</tr>
<tr>
<td>David Bradford</td>
<td>BU/CAS</td>
<td>bradford@bu.edu</td>
</tr>
<tr>
<td>Rick Foster</td>
<td>MIT/MKI</td>
<td>rickf@space.mit.edu</td>
</tr>
<tr>
<td>Robert Goeke</td>
<td>MIT/MKI</td>
<td>goeke@space.mit.edu</td>
</tr>
<tr>
<td>Mike Golightly</td>
<td>BU/CAS</td>
<td>mgolight@bu.edu</td>
</tr>
<tr>
<td>Nicholas Gross</td>
<td>BU/Astro</td>
<td>gross@bu.edu</td>
</tr>
<tr>
<td>Steve Johnson</td>
<td>JSC/SRAG</td>
<td>asjohnso@ems.jsc.nasa.gov</td>
</tr>
<tr>
<td>Steve Joy</td>
<td>UCLA/PDS/PPI</td>
<td>sjoy@igpp.ucla.edu</td>
</tr>
<tr>
<td>Justin Kasper</td>
<td>Harvard/SAO</td>
<td>jkasper@cfa.harvard.edu</td>
</tr>
<tr>
<td>Richard Saylor</td>
<td>GSFC/LRO</td>
<td>Richard.Saylor@gsfc.nasa.gov</td>
</tr>
<tr>
<td>Stanley R. Scott</td>
<td>GSFC/LRO</td>
<td>Stanley.R.Scott@nasa.gov</td>
</tr>
<tr>
<td>Edward J. Semones</td>
<td>JSC/SF</td>
<td>edward.j.semones@nasa.gov</td>
</tr>
<tr>
<td>Mark Sharlow</td>
<td>UCLA/PDS/PPI</td>
<td>msharlow@igpp.ucla.edu</td>
</tr>
<tr>
<td>Harlan Spence</td>
<td>BU/Astro</td>
<td>spence@bu.edu</td>
</tr>
<tr>
<td>Ray Walker</td>
<td>UCLA/PDS/PPI</td>
<td>rwalker@igpp.ucla.edu</td>
</tr>
</tbody>
</table>

1.2 Document change log

Table 2: Document change log

<table>
<thead>
<tr>
<th>Change</th>
<th>Date</th>
<th>Affected portion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial draft</td>
<td>03/31/2007</td>
<td>All</td>
</tr>
<tr>
<td>Release A</td>
<td>05/31/2007</td>
<td>All</td>
</tr>
<tr>
<td>Release B (for peer review)</td>
<td>08/01/2007</td>
<td>All</td>
</tr>
<tr>
<td>Release C</td>
<td>11/15/2007</td>
<td>All</td>
</tr>
</tbody>
</table>

1.3 TBD items

Table 3 lists items that are not yet finalized.

Table 3: List of TBD items

<table>
<thead>
<tr>
<th>Item</th>
<th>Section(s)</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Names of NAIF-supplied products</td>
<td>Table 7, Table 19</td>
<td>7, 19</td>
</tr>
</tbody>
</table>
1.4 Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>BU</td>
<td>Boston University</td>
</tr>
<tr>
<td>CAS</td>
<td>College of Arts and Sciences (BU)</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disc – Read-Only Memory</td>
</tr>
<tr>
<td>CDR</td>
<td>Calibrated Data Record</td>
</tr>
<tr>
<td>CK</td>
<td>C-matrix Kernel (NAIF orientation data)</td>
</tr>
<tr>
<td>CRaTER</td>
<td>Cosmic Ray Telescope for the Effects of Radiation</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>DAP</td>
<td>Data Analysis Product</td>
</tr>
<tr>
<td>DDR</td>
<td>Derived Data Record</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Versatile Disc</td>
</tr>
<tr>
<td>DVD-R</td>
<td>DVD - Recordable media</td>
</tr>
<tr>
<td>E&PO</td>
<td>Educational and Public Outreach</td>
</tr>
<tr>
<td>EDR</td>
<td>Experiment Data Record</td>
</tr>
<tr>
<td>SPDR</td>
<td>Standard Product (Experiment and Pipeline) Data Record</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of View</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte(s)</td>
</tr>
<tr>
<td>GCR</td>
<td>Galactic Cosmic Ray</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>HK</td>
<td>Housekeeping</td>
</tr>
<tr>
<td>HTML</td>
<td>Hypertext Markup Language</td>
</tr>
<tr>
<td>ICD</td>
<td>Interface Control Document</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standards Organization</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>JSC</td>
<td>Johnson Spaceflight Center</td>
</tr>
<tr>
<td>LET</td>
<td>Lineal Energy Transport</td>
</tr>
<tr>
<td>LRO</td>
<td>Lunar Reconnaissance Orbiter</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte(s)</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MKI</td>
<td>MIT Kavli Institute for Astrophysics and Space Research</td>
</tr>
<tr>
<td>MOC</td>
<td>(Missions Operations Center (GSFC, LRO)</td>
</tr>
<tr>
<td>NAIF</td>
<td>Navigation and Ancillary Information Facility (JPL)</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NSSDC</td>
<td>National Space Science Data Center</td>
</tr>
<tr>
<td>ODL</td>
<td>Object Description Language</td>
</tr>
<tr>
<td>PCK</td>
<td>Planetary Cartographic and Physical Constants Kernel (NAIF)</td>
</tr>
</tbody>
</table>
1.5 Glossary

Archive – An archive consists of one or more data sets along with all the documentation and ancillary information needed to understand and use the data. An archive is a logical construct independent of the medium on which it is stored.

Archive Volume – A volume is a unit of media on which data products are stored; for example, one DVD-R. An *archive volume* is a volume containing all or part of an archive; that is, data products plus documentation and ancillary files.

Archive Volume Set – When an archive spans multiple volumes, they are called an *archive volume set*. Usually the documentation and some ancillary files are repeated on each volume of the set, so that a single volume can be used alone.

Catalog Information – High-level descriptive information about a data set (e.g. mission description, spacecraft description, instrument description), expressed in Object Description Language (ODL), which is suitable for loading into a PDS catalog.

Data Product – A labeled grouping of data resulting from a scientific observation, usually stored in one file. A product label identifies, describes, and defines the structure of the data. An example of a data product is a planetary image, a spectral table, or a time series table.

Data Set – A data set is an accumulation of data products together with supporting documentation and ancillary files.

Experiment Data Record – An accumulation of raw output data from a science instrument, in chronological order, with duplicate records removed, together with supporting documentation and ancillary files.

Pipeline Data Record – An accumulation of calibrated data from a science instrument, derived from experiment data records, together with supporting documentation, calibration data, and ancillary files.

Standard Data Product – A data product generated in a predefined way using well-understood procedures, processed in “pipeline” fashion. Data products that are generated in a non-standard way are sometimes called *special data products*.
2 Introduction

2.1 SIS content overview

This software interface specification (SIS) describes the format, content, and generation of the CRaTER experiment and pipeline data record archive volumes. Section 3 describes the procedure for transferring data products to archive media. Section 4 describes the structure of the archive volumes and the contents of each file. Section 5 describes the file formats used on the archive volumes. Finally, Section Appendix A lists the individuals responsible for generating the archive volumes.

2.2 CRaTER scientific overview

The investigation hardware consists of a single, integrated sensor and electronics box with simple electronic and mechanical interfaces to the LRO spacecraft. The CRaTER sensor front-end design is based on standard stacked-detector, cosmic ray telescope systems that have been flown for decades, using detectors developed for other NASA flight programs. The analog electronics design is virtually identical to the robust and flight-proven design of the NASA/POLAR Imaging Proton Spectrometer that has been operating flawlessly on orbit since 1996. The digital processing unit is a simple and straightforward design also based on similar instruments with excellent spaceflight heritage. No new technology developments or supporting research are required for the final design, fabrication, and operation of this instrument.

The CRaTER telescope consists of six ion-implanted silicon detectors, mounted on detector boards, and separated by pieces of tissue-equivalent plastic, hereinafter referred to as TEP. All six of the silicon detectors are 35mm in diameter. Detectors 1, 3, and 5 are 140µm thick; the others are 1000µm thick. TEP (such as A-150 manufactured by Standard Imaging) simulates soft body tissue (muscle) and has been used for both ground-based as well as space-based (i.e., Space Station) experiments.

<table>
<thead>
<tr>
<th>Table 5: Instrument design characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low LET detectors</td>
</tr>
<tr>
<td>High LET detectors</td>
</tr>
<tr>
<td>TEP absorber 1</td>
</tr>
<tr>
<td>TEP absorber 2</td>
</tr>
<tr>
<td>Zenith FOV</td>
</tr>
<tr>
<td>Nadir FOV</td>
</tr>
<tr>
<td>Geometry factor</td>
</tr>
<tr>
<td>LET range</td>
</tr>
<tr>
<td>Incident particle energy range</td>
</tr>
</tbody>
</table>

Solid-state detectors use semi-conducting crystals (in CRaTER’s case, silicon) with n-type (electron-rich, electron conducting) and p-type (electron-deficient, hole conducting) regions.

When a reversed bias voltage is applied across the junction, the unbonded electrons in the semiconductor are pushed away from the voltage source, while the holes are pulled towards it. This leaves a neutral area void of charge and current at the junction of the sectors, called the depletion region. As incoming radiation (e.g., a solar proton or cosmic ray particle) collides with the
depletion region, electron-hole pairs are formed in the material (where a once bonded electron is freed from its atom, leaving a hole). The electron and the hole respond to the applied voltage, and a small current is created. This current can be detected and later analyzed.

A cold environment greatly reduces the transmission of thermal signals. In addition, the solid state of the semi-conducting material makes it easier to detect those signals attributable to freed electrons.

Tissue equivalent plastic (or TEP) is a plastic recipe designed to simulate human tissue. It includes hydrogen and nitrogen percentages-by-composition that are similar to that found in human skin and muscle. Scientists can use the atomic-level effects that radiation has on the TEP to deduce what sort of similar effects may occur in humans.

2.2.1 Scientific objectives

The primary goal of CRaTER is to characterize the global lunar radiation environment and its biological impacts. This objective is critical if we are to implement a sustained, safe, and affordable human and robotic program to search for evidence of life, understand the history of the solar system, and prepare for future human exploration, a vision established by the Presidential Space Exploration Policy Directive in 2004.

In order to achieve this high-priority objective, the CRaTER investigation team established the following interrelated investigation goals:

• Measure and characterize that aspect of the deep space radiation environment, LET spectra of galactic and solar cosmic rays (particularly above 10 MeV), most critically important to the engineering and modeling communities to assure safe, long-term, human presence in space.

• Develop a novel instrument, steeped in flight heritage, that is simple, compact, and comparatively low-cost, but with a sufficiently large geometric factor needed to measure LET spectra and its time variation, globally, in the lunar orbit.

• Investigate the effects of shielding by measuring LET spectra behind different amounts and types of areal density, including tissue-equivalent plastic.

• Test models of radiation effects and shielding by verifying/validating model predictions of LET spectra with LRO measurements, using high-quality GCR and SPE spectra available contemporaneously on ongoing/planned NASA missions.

2.2.2 Radiation

Radiation has a potential effect on a wide variety of life. Beginning with the ionization of atoms and resulting in eventual cell damage, radiation may impact higher-level biological functions. The most critical damage is that which occurs in the DNA of cells.

At the molecular level, there are four possible effects that radiation may have on humans.

The first group of effects has no negative consequences for higher-level biological functions. Either cells remain undamaged by the radiation (in this case, the ionization of materials in the cell may produce chemical reactions which occur normally in the cell) or cells may be damaged, but not irreparably so. Often, even damage to chromosomes may occur with few long-term effects because the cell is able to detect and repair a limited amount of damage. Even without
radiation dosage, changes and repairs in cells, including chromosomes, occur constantly in our bodies.

The second group of effects is more critical and will most likely have a negative impact on higher-level biological functions. Cells may be damaged and either begin operating abnormally or die. If enough damage is done and a cell is unable to completely repair itself, it may perform further functions abnormally, including reproduction. This usually occurs when cells are exposed to a lower dose of radiation over an extended period of time (or chronic radiation). It is this kind of exposure that may lead to cancer and genetic effects (problems in offspring), depending on the strength of the dose. With exposure to high-dose, short-term radiation (or acute radiation), damage may occur to the point where a cell is unable to perform any further function, including reproduction, and may even die. On a large enough scale (for example, at the organ level) this kind of damage is likely to cause radiation sickness. Symptoms of radiation sickness include skin that seems slightly sunburned, hair loss, fatigue, internal bleeding, fever, nausea, dehydration and diarrhea, bleeding ulcers, loss of coordination, confusion, coma, convulsions, shock, and more.

2.3 CRaTER Data Sets

The standard product types generated by the CRaTER SOC are listed in Table 6.

Table 6: Data Set Names and Contents

<table>
<thead>
<tr>
<th>Standard Data Product ID</th>
<th>Key/Physical Parameters</th>
<th>NASA Level</th>
<th>COD MAC</th>
<th>Processing Inputs</th>
<th>Product Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAT_L0_PRI CRAT_L0_SEC CRAT_L0_HK</td>
<td>Raw CRaTER Experiment Data Record: pulse heights, secondary science, and instrument housekeeping</td>
<td>0</td>
<td>2</td>
<td>Raw data from LRO MOC as recorded on LRO</td>
<td>Binary CCSDS Packets</td>
</tr>
<tr>
<td>CRAT_L1_PRI CRAT_L1_SEC CRAT_L1_HK</td>
<td>CRaTER Calibrated Data Record, split into primary and secondary science data, and housekeeping</td>
<td>1</td>
<td>3</td>
<td>Level 0 data with pulse heights in eV & housekeeping in engineering units</td>
<td>ASCII</td>
</tr>
<tr>
<td>CRAT_L2_PRI CRAT_L2_SEC CRAT_L2_HK</td>
<td>CRaTER Derived Data Record, part 1: LET deposition in silicon. (Pulse heights converted into energy deposited within unit path length through each detector.)</td>
<td>2</td>
<td>3/4</td>
<td>Level 1 data with pulse heights converted to LET energy and UTC time tags added; housekeeping in engineering units, conditioned.</td>
<td>ASCII</td>
</tr>
</tbody>
</table>

1 The CR_L2_HK and CR_L2_SEC products are CODMAC Level 3, CR_L2_PRI is Level 4.

The Level 0 products, commonly referred to as the Experiment Data Record (EDR), consist of binary CCSDS packets, output by the instrument, stored in the spacecraft’s solid-state recorder, and transmitted to the ground. The only changes made to these files by spacecraft and ground processing are as follows:

- Removal of duplicate data packets and sorting the remainder in ascending time order
- Sorting and merging of the data packets into files that contain a single packet type and span one 24 hour interval from 0h UTC
- Update of some file header fields to document the data content and time range
Each raw CRaTER data file output from the instrument (MOC-4 and MOC-5 in Table 7) is a time-ordered series of measurements, prefixed by a 64-byte header that is created onboard. EDR products are generated for all mission phases during which CRaTER data are acquired.

Level 1 data products differ from Level 0 in three important respects: they are written in fixed-length ASCII records, their detector values are converted to energy (in electron volts), and the housekeeping fields are converted to engineering units (i.e., volts, amps, degrees centigrade, etc.).

Level 2 data products are similar to Level 1 but differ in three respects: the detector values are also converted to lineal energy transfer (eV/µm), geometrical fields have been added to the secondary housekeeping, and the housekeeping fields have been “conditioned” to eliminate corrupted telemetry values and average over a suitable time window.

2.3.1 Input Data Files

Table 7 describes the files that are transmitted from the CRaTER instrument to the MOC, and The instrument products are described in detail in Section 4 of this document. The other products are defined in §4 of 431–ICD–000049 (see §2.6).

Table 7: Raw Data Products

<table>
<thead>
<tr>
<th>ID</th>
<th>Product</th>
<th>Format</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC-4</td>
<td>CRaTER Housekeeping Data</td>
<td>CCSDS</td>
<td>CRAT_yyyddd_nnnnnn.hk</td>
</tr>
<tr>
<td>MOC-5</td>
<td>CRaTER Raw Measurement Data</td>
<td>CCSDS</td>
<td>CRAT_yyyddd_nnnnnn.sci</td>
</tr>
</tbody>
</table>

Table 8 lists the additional files received from the LRO MOC and which will be included in the EXTRAS directory of the CRaTER EDR archive. One (MOC–3) comes from other spacecraft systems, and the remaining 13 come from the MOC itself.

Table 8: Ancillary Data Products

<table>
<thead>
<tr>
<th>ID</th>
<th>Product</th>
<th>Format</th>
<th>File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOC-2</td>
<td>SLCK Clock Correlation</td>
<td>SPICE</td>
<td>LRO_CLKCOR_yyyddd_Vvv.tsc</td>
</tr>
<tr>
<td>MOC-3</td>
<td>Spacecraft Housekeeping Data</td>
<td>CCSDS</td>
<td>CRAT_SCHK_yyyddd_nnnnnn.dat</td>
</tr>
<tr>
<td>MOC-7</td>
<td>Daily Command Load Report</td>
<td>ASCII</td>
<td>LROATS_yyyddd_Vvv.txt</td>
</tr>
<tr>
<td>MOC-33</td>
<td>Event Kernel</td>
<td>SPICE</td>
<td>LRO_EvtKer_yyyddd_Vvv.txt</td>
</tr>
<tr>
<td>MOC-40</td>
<td>Frame Kernels</td>
<td>SPICE</td>
<td>LRO_FRAMES_yyyddd_Vvv.txt</td>
</tr>
<tr>
<td>MOC-42</td>
<td>Definitive Spacecraft Orientation (CK)</td>
<td>SPICE</td>
<td>FDF35_yyyddd_yyyddd_nnn dsp</td>
</tr>
<tr>
<td>MOC-46</td>
<td>CRaTER Housekeeping Summary</td>
<td>ASCII</td>
<td>CRAT_yyyddd_nnnnnn_hk.meta</td>
</tr>
<tr>
<td>MOC-47</td>
<td>CRaTER Raw Measurement Summary</td>
<td>ASCII</td>
<td>CRAT_yyyddd_nnnnnn_sci.meta</td>
</tr>
<tr>
<td>FDF-29</td>
<td>Definitive Spacecraft Ephemeris (SPK)</td>
<td>SPICE</td>
<td>FDF29_yyyddd_yyyddd_nnn dsp</td>
</tr>
<tr>
<td>NAIF-1</td>
<td>Planetary Ephemeris (SPK)</td>
<td>SPICE</td>
<td>TBD</td>
</tr>
<tr>
<td>NAIF-2</td>
<td>Leap Second Kernel (LSK)</td>
<td>SPICE</td>
<td>TBD</td>
</tr>
<tr>
<td>NAIF-3</td>
<td>Generic Planetary Constants (PCK)</td>
<td>SPICE</td>
<td>TBD</td>
</tr>
</tbody>
</table>
2.4 Pipeline Processing

The products received from the MOC are staged at the CRaTER SOC until all of the necessary inputs are available that relate to a particular 24-hour period, starting and ending at 0h UTC. The Level 0, 1, and 2 products are then generated in a 4-step process, as follows:

1. SPICE kernels (see Table 8) and CRaTER calibration tables are read.
2. All CRaTER raw telemetry files (see Table 7) are read and, if their time fields fall within the desired 24-hour period (plus a few minutes either side), they are written to a set of 3 temporary files each containing a single packet type: primary science, secondary science, or instrument housekeeping. Garbled telemetry packets are reported.
3. The three temporary files are read, sorted into ascending time order, and rewritten. Duplicate packets are dropped after reporting any mis-matches.
4. The temporary files are read a second time, gaps are noted, and those packets that fall strictly within the 24-hour period are written out as Level 0 products. At the same time, the Level 1 and 2 product records are created from the corresponding Level 0 records. Level 1 housekeeping fields are produced from the raw Level 0 values and the calibration tables, as are Level 2 housekeeping fields, except that the latter are also “conditioned” by taking the time-average of several consecutive raw values after throwing away the largest and smallest values. The energy and LET fields in the Level 1 and 2 primary science records are created from the calibration tables and from the temperature fields in the temporary housekeeping files. The Level 1 secondary science records are merely the translation into ASCII of their Level 0 equivalents, but the Level 2 secondary science records also include geometrical information derived from the SPICE kernels.

Each 24-hour period therefore results in 9 data products (Level 0, 1, and 2, each of primary and secondary science and housekeeping), and 9 PDS detached label files. Three additional files are created, which will be reported in various directories of the CRaTER archive volumes:

- an index file containing the product file names and dates, which will be collected in the INDEX.TAB and CUMINDEX.TAB files in the INDEX directory;
- a gap file, which will be collected, according to packet type, in the GAPS_PRI.TAB, GAPS_SEC.TAB, and GAPS_HK.TAB files in the DOCUMENT directory of Level 0 products;
- and a log file reporting everything else, which will be found in the DATA subdirectories with the products to which it refers.

Consult §4 for more detailed information about these files and their locations within the archive.

At infrequent intervals, CRaTER will be operated in a Calibration Mode, in which the spacecraft will be rotated to point the instrument to the Moon’s limb. The data collected during this procedure, combined with measurements from CRaTER’s pulser mode, will be used to update the calibration coefficients used by the pipeline software to convert the raw Level 0 detector values to energy and LET. These calibration changes will be documented in ERRATA.TXT, in MODE_CHANGES.TAB in the DOCUMENT directory, and in the NOTE fields of the PDS label files describing the individual products.
2.5 Scope of this document

The specifications in this SIS apply to all CRaTER Standard Data Record products submitted for archive to the Planetary Data System (PDS), for all phases of the LRO mission. Some sections of this document describe parts of the CRaTER archive and archiving process that are managed by the PDS archive team. These sections have been provided for completeness of information and are not maintained by the CRaTER team.

2.6 Applicable Documents

Lunar Reconnaissance Orbiter Project Data Management and Archive Plan, 431-PLAN-00182.

CRaTER Functional Instrument Description and Performance Verification Plan, 32-05002, Rev. 01, 06/20/2006.

2.7 Audience

This document is intended to be useful to those who wish to understand the format and content of the CRaTER Standard Data Record submitted to the PDS archive. Such users might typically be software engineers, data analysts, or planetary scientists.
3 Archive volume generation

The CRaTER Standard Data Record archive collection is produced by the CRaTER Science Operations Team in cooperation with the PDS Planetary Plasma Interactions (PPI) Node at the University of California, Los Angeles (UCLA). The archive volume creation process described in this section sets out the roles and responsibilities of both these groups. The assignment of tasks has been agreed by both parties, and codified in an ICD (32–01280, see §2.6). Archived data received by the PPI Node from the CRaTER team will be made electronically available to PDS users as soon as practicable but no later than as laid out in Table 9.

3.1 Data transfer methods and delivery schedule

The CRaTER team will deliver data to the PPI Node in standard product packages containing three months of data, also adhering to the schedule set out in Table 9. Each package will comprise both data and ancillary data files, organized into directory structures consistent with the volume design described in Section 4, and combined into a deliverable file(s) using file archive and compression software. When these files are unpacked at the PPI Node in the appropriate location, the constituent files will be organized into the archive volume structure.

Table 9: Data delivery schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>End of commissioning (nominally November 2008) + 6 months</td>
<td>Selected data from cruise and from the lunar-orbit commissioning period; the first 3 months of post-commissioning data</td>
</tr>
<tr>
<td>Every 3 months</td>
<td>Next 3 months of prime-mission data</td>
</tr>
</tbody>
</table>

The archives will be sent electronically from the CRaTER SOC to a user account on the PPI node using the ssh protocol. The SOC operator will copy each volume (see Table 11) in the form of a compressed tar archive (a.k.a. tarball) to an appropriate location within the PPI file system, and will notify the PPI node via e-mail. Only those files that have changed since the last delivery will be included. The PPI operator will decompress the data, using the tar checksums and the EXTRAS/MANIFEST.TXT and EXTRAS/CHECKSUM.TXT files to verify that the archive is complete. Once this has been checked, the PPI operator will send a confirmatory e-mail to the CRaTER team to mark the delivery as “received”.

Following receipt of a data delivery, PPI will organize the data into PDS archive volume structure within its online data system. PPI will generate all of the required files associated with a PDS archive volume (index file, read-me files, etc.) as part of its routine processing of incoming CRaTER data. Newly delivered data will be made available publicly through the PPI online system once accompanying labels and other documentation have been validated. It is anticipated that this validation process will require at least fourteen working days from receipt of the data by PPI. The first two data deliveries are expected to require somewhat more time for the PPI Node to process before making the data publicly available.

The LRO prime mission begins at Lunar Orbit Insertion (LOI), nominally October/November 2008, and lasts for 13 months. Table 9 formalizes the data delivery schedule for all of the CRaTER cruise and prime mission data. Data delivery from SOC to PPI node will occur on the 15th of the month and the data will be publicly available on the 1st of the following month. Archiving of products from any extended mission period will be negotiated with the LRO Project at a later date.
3.2 Data validation

The CRaTER standard data archive volume set will include all CRaTER data acquired during the LRO mission. The archive validation procedure described in this section applies to volumes generated during both the cruise and prime phases of the mission.

PPI node staff will carefully examine the first archive volume that they receive that contains data from the nominal LRO mission to determine whether the archive is appropriate to meet the stated science objectives of the instrument. The PPI node will also review the archive product generation process for robustness and ability to detect discrepancies in the end products; documentation will be reviewed for quality and completeness.

As expertise with the instrument and data develops the CRaTER team may decide that changes to the structure or content of its standard data products are warranted. Should these changes be implemented, the new data product and archive volume will be subjected to a full PDS peer review, and this document will be revised to reflect the modified archive. Table 2 lists the history of all modifications to the archive structure and contents.

Additionally, the CRaTER team may generate and archive special data products that cover specific observations or data-taking activities. This document does not specify how, when, or under what schedule, any such special archive products are generated.

3.3 Data product and archive volume size estimates

CRaTER standard data products are organized into files that span a single Earth day of data acquisition, breaking at 0h UTC. Files vary in size depending on the telemetry rate and allocation. Table 10 summarizes the expected sizes of the CRaTER standard products, assuming an average event rate of 60 per second.

All CRaTER standard data are organized by the PDS team onto a single archive volume covering a time interval governed by the physical capacity of the archive volume media. The data on the volume are organized into one-day subdirectories.

Table 10: Data product size and archive volume production rate

<table>
<thead>
<tr>
<th>Data Product</th>
<th>Production rate (approximate)</th>
<th>Size for 1-year primary mission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 0 Science & Housekeeping</td>
<td>52 MB per day</td>
<td>19 Gbytes</td>
</tr>
<tr>
<td>Level 1 Science & Housekeeping</td>
<td>625 MB per day</td>
<td>228 Gbytes</td>
</tr>
<tr>
<td>Level 2 Science & Housekeeping</td>
<td>1484 MB per day</td>
<td>541 Gbytes</td>
</tr>
<tr>
<td>CRaTER Total</td>
<td>2.0 Gbytes per day</td>
<td>789 GBytes</td>
</tr>
</tbody>
</table>

Following receipt of CRaTER data by the PPI Node it is expected that fourteen working days will be required before the data are made available on PPI web pages. Once sufficient data have accumulated a new archive volume will be created by PPI. It is anticipated that two weeks will be required to produce and validate this new archive volume once the data delivery that fills the volume has been made available online.
3.4 Backups and duplicates

The PPI Node keeps three copies of each archive volume. One copy is the primary archive volume, another is an onsite backup copy, and the final copy is a local, off-site backup copy. The volumes sent to the CRaTER team and the PDS Engineering Node are to be kept by those institutions. Once the archive volumes are fully validated and approved for inclusion in the archive, a copy of the data is sent to the National Space Science Data Center (NSSDC) for long-term archive in a NASA-approved deep-storage facility. The PPI Node may maintain additional copies of the archive volumes, either on or off-site as deemed necessary.

Figure 1 illustrates the process of duplicating and disseminating the CRaTER standard archive volumes.

Figure 1: Duplication and dissemination of CRaTER standard archive volumes
3.5 Labeling and identification

Each CRaTER data volume bears a unique volume ID using the last two components of the volume set ID [PDS Standards Reference, see §2.6]. For each physical medium, the volume IDs are USA_NASA_PDS_LROCRA_nnnn, where LROCRA is the VOLUME_SET_ID defined by the PDS and nnnn is the sequence number of the individual volume. Hence the first CRaTER Level 0 volume has the volume ID LROCRA_0001, as shown in Table 11.

Table 11: PDS Data Set Name Assignments

<table>
<thead>
<tr>
<th>Level</th>
<th>DATA_SET_ID</th>
<th>VOLUME_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRaTER EDR</td>
<td>LRO-L-CRAT-2-EDR-RAWDATA-V1.0</td>
<td>LROCRA_0001</td>
</tr>
<tr>
<td>CRaTER CDR</td>
<td>LRO-L-CRAT-3-CDR-CALIBRATED-V1.0</td>
<td>LROCRA_1001</td>
</tr>
<tr>
<td>CRaTER DDR–1</td>
<td>LRO-L-CRAT-3/4-DDR-PROCESSED-V1.0</td>
<td>LROCRA_2001</td>
</tr>
<tr>
<td>CRaTER DDR–2</td>
<td>LRO-L-CRAT-5-DDR-ACCUMULATED-V1.0</td>
<td>LROCRA_3001</td>
</tr>
<tr>
<td>CRaTER DAP</td>
<td>LRO-L-CRAT-5-DAP-MODELLED-V1.0</td>
<td>LROCRA_4001</td>
</tr>
</tbody>
</table>
4 Archive volume contents

This section describes the contents of the CRaTER standard product archive collection volumes, including the file names, file contents, file types, and the organizations responsible for providing the files. The complete directory structure is shown in Figure 2. All the ancillary files described herein appear on each CRaTER standard product volume, except where noted.

Figure 2: Archive volume directory structure

4.1 Root directory

The files listed in Table 12 are contained in the (top-level) root directory, and are produced by the CRaTER team in consultation with the PPI node of the PDS. With the exception of the hypertext file and its label, all of these files are required by the PDS volume organization standards.

Table 12: Root directory contents

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAREADME.HTM</td>
<td>HTML version of AAREADME.TXT</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>AAREADME.LBL</td>
<td>A PDS detached label that describes AAREADME.HTM</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>AAREADME.TXT</td>
<td>This file completely describes the volume organization and contents (PDS label attached)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>ERRATA.TXT</td>
<td>A text file containing a cumulative listing of comments and updates concerning all CRaTER standard products on all CRaTER volumes in the volume set published to date</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>VOLDESC.CAT</td>
<td>A description of the contents of this volume in a PDS format readable by both humans and computers</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>
4.2 BROWSE directory

The BROWSE directory contains daily browse plots of the CRaTER data, split into 100-day intervals. The contents of this directory and its subdirectories are described in Table 13.

Table 13: BROWSE directory contents

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>yyyyd00</td>
<td>Subdirectories, each spanning a 100-day interval from yyyyd00 through yyyyd99</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>yyyyd00/yyyyd00.PDF</td>
<td>A PDF file containing a plot of the events acquired on day ddd of year yyyy</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>yyyyd00/yyyyd00.LBL</td>
<td>The PDS label describing the corresponding plot file</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>

4.3 CALIB directory

The CALIB directory, which only exists on the Level 1 and 2 archives, contains a copy of the calibration plan and the ancillary data used to calibrate the CRaTER instrument performance. The contents of this directory are described in Table 14.

Table 14: CALIB directory contents

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_CAL_PLAN.HTM</td>
<td>The CRaTER Calibration Plan (HTML format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_CAL_PLAN.LBL</td>
<td>PDS label describing CRAT_CAL_PLAN.PDF</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_CAL_PLAN.PDF</td>
<td>The CRaTER Calibration Plan (Acrobat™ format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>*.DAT</td>
<td>Calibration data files in Level 0 format</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>*.LBL</td>
<td>PDS label describing the corresponding DAT file</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>

4.4 CATALOG directory

The files in the CATALOG directory provide a top-level understanding of the LRO mission, spacecraft, instruments, and data sets in the form of completed PDS templates. The information necessary to create the files is provided by the CRaTER team and formatted into standard template formats by the PPI Node. The files in this directory are coordinated with PDS data engineers at both the PPI Node and the PDS Engineering Node.

Table 15: CATALOG directory contents

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CATINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_INST.CAT</td>
<td>PDS instrument catalog description of the CRaTER instrument</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L0_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 0 (raw) data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
</tbody>
</table>
4.5 DATA directory

4.5.1 Contents

The DATA directory contains the data files produced by the CRaTER team. In the Level 0 archive, these files contain the raw binary instrument data in the form of CCSDS telemetry packets, organized into correct time sequence, time tagged, and edited to remove obviously bad data. In the Level 1 and Level 2 archives, the contents of the DATA directory are ASCII file that result from passing the corresponding Level 0 files through the processing pipeline.

The data files are of the highest quality possible. Any residual issues are documented in AAREADME.TXT and ERRATA.TXT. Users are referred to these files for a detailed description of any outstanding matters associated with the archived data.

Additional files relevant to the data files are located in the EXTRAS directory (see §4.7). These include ancillary information files (engineering, housekeeping) and channelized data files (e.g. spacecraft attitude, status information for CRaTER instrumental subsystems), provided to facilitate data processing and analysis.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAT_L1_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 1 data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
<tr>
<td>CRAT_L2_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 2 data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
<tr>
<td>CRAT_REF.CAT</td>
<td>CRaTER-related references mentioned in other CAT files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>INSTHOST.CAT</td>
<td>A description of the LRO spacecraft</td>
<td>LRO Project</td>
</tr>
<tr>
<td>MISSION.CAT</td>
<td>PDS mission catalog description of the LRO mission</td>
<td>LRO Project</td>
</tr>
<tr>
<td>PERSON.CAT</td>
<td>PDS personnel catalog description of CRaTER team members and other persons</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>PROJ_REF.CAT</td>
<td>References mentioned in INSTHOST.CAT and MISSION.CAT</td>
<td>LRO Project</td>
</tr>
<tr>
<td>CATINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_INST.CAT</td>
<td>PDS instrument catalog description of the CRaTER instrument</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L0_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 0 (raw) data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
<tr>
<td>CRAT_L1_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 1 data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
<tr>
<td>CRAT_L2_DS.CAT</td>
<td>PDS data set catalog description of the CRaTER Level 2 data files</td>
<td>CRaTER team, PPI Node</td>
</tr>
<tr>
<td>CRAT_REF.CAT</td>
<td>CRaTER-related references mentioned in other CAT files</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>
Table 16: DATA directory contents

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATAINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>yyyy</td>
<td>Subdirectories containing CRaTER data acquired in year yyyy</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>

4.5.2 Subdirectory structure

In order to manage files in an archive volume more efficiently the DATA directory is divided into subdirectories. The two levels of division are based on time; data are organized into yearly subdirectories, which are further divided into a number of daily sub-subdirectories. The naming convention for the yearly directories is yyyy, and for the daily directories it is yyyyddd, where ddd is the three-digit day of year. For example, all data for the year 2009 are contained below the directory 2009, with data for Jan 1 2009 UTC found in the subdirectory 2009/2009001, and so on.

4.5.3 Required files

A PDS label describes each file in the DATA path of an archive volume. Text documentation files have attached (internal) PDS labels and data files have detached labels. Detached PDS label files have the same root name as the file they describe but have the extension LBL. The format of the data files for each standard data product is constant throughout the archive volume and is described in FMT files located in the LABEL directory (see §4.9).

4.5.4 The yyyy/yyyyddd subdirectory

This directory contains CRaTER data files and their corresponding PDS labels. As shown in Table 17, the data in these files span a time interval of one day, the particular day being identified from both the file name and the name of the parent directory. The names also contain a 2-digit version. The initial version is V01.

Table 17: DATA/yyyy/yyyyddd directory contents

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAT_yyyyddd_Vnn.LOG.TXT</td>
<td>Pipeline log file (ASCII)</td>
</tr>
<tr>
<td>CRAT_L0_HK_yyyyddd_Vnn.DAT</td>
<td>CRaTER Level 0 Housekeeping Data</td>
</tr>
<tr>
<td>CRAT_L1_HK_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 1 Housekeeping Data</td>
</tr>
<tr>
<td>CRAT_L2_HK_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 2 Housekeeping Data</td>
</tr>
<tr>
<td>CRAT_Ln_HK_yyyyddd_Vnn.LBL</td>
<td>CRaTER Level n Housekeeping Data PDS Label</td>
</tr>
<tr>
<td>CRAT_L0_PRI_yyyyddd_Vnn.DAT</td>
<td>CRaTER Level 0 Primary Science Data</td>
</tr>
<tr>
<td>CRAT_L1_PRI_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 1 Primary Science Data</td>
</tr>
<tr>
<td>CRAT_L2_PRI_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 2 Primary Science Data</td>
</tr>
<tr>
<td>CRAT_Ln_PRI_yyyyddd_Vnn.LBL</td>
<td>CRaTER Level n Primary Science Data PDS Label</td>
</tr>
<tr>
<td>CRAT_L0_SEC_yyyyddd_Vnn.DAT</td>
<td>CRaTER Level 0 Secondary Science Data</td>
</tr>
<tr>
<td>CRAT_L1_SEC_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 1 Secondary Science Data</td>
</tr>
<tr>
<td>CRAT_L2_SEC_yyyyddd_Vnn.TAB</td>
<td>CRaTER Level 2 Secondary Science Data</td>
</tr>
<tr>
<td>CRAT_Ln_SEC_yyyyddd_Vnn.LBL</td>
<td>CRaTER Level n Secondary Science Data PDS Label</td>
</tr>
</tbody>
</table>
Level 0 data file names end in DAT, indicating their binary contents, while the Level 1 and 2 data files, which contain fixed-length ASCII records, end in TAB. Each file is accompanied by a PDS label (LBL) describing its contents, and contain pointers to the relevant format definition files (FMT) in the LABEL directory. The labels permit the contents of most of the products to be browsed by PDS software, e.g., NASAView, tbtool, etc. The exception is the Level 0 Primary Science product, since it contains varying-length records that do not comply with PDS standards. This product can instead be listed by programs in the SOFTWARE directory (see §4.10).

4.6 DOCUMENT directory

The DOCUMENT directory contains a range of documentation considered either necessary or useful for users to understand the archive data set. Documents may be included in multiple formats, for example, ASCII, PDF, MS Word, or HTML. PDS standards require that any documentation needed for use of the data be available in an ASCII format. HTML is an acceptable ASCII format in addition to plain text. The following files are contained in the DOCUMENT directory, grouped into the subdirectories shown.

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOCINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_HK.LBL</td>
<td>A PDS detached label for GAPS_HK.TXT</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_HK.TAB</td>
<td>A cumulative listing of the missing Housekeeping packets up to and including the days for the current volume</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_PRI.LBL</td>
<td>A PDS detached label for GAPS_PRI.TXT</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_PRI.TAB</td>
<td>A cumulative listing of the missing Primary Science packets for the days up to and including the days for the current volume</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_SEC.LBL</td>
<td>A PDS detached label for GAPS_SEC.TXT</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>GAPS_SEC.TAB</td>
<td>A cumulative listing of the missing Secondary Science packets for the days up to and including the days for the current volume</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>MODE_CHANGES.LBL</td>
<td>A PDS detached label for MODE_CHANGES.TAB</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>MODE_CHANGES.TAB</td>
<td>A cumulative listing of instrument mode changes since launch</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>VOLSIS*.JPG</td>
<td>Graphics files used by VOLSIS.HTM</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>VOLSIS.HTM</td>
<td>The SIS in HTML format</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>VOLSIS.LBL</td>
<td>A PDS detached label for the SIS document</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>VOLSIS.PDF</td>
<td>The SIS in PDF format</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>
4.7 EXTRAS directory

The EXTRAS directory contains files which facilitate the use of the archive volume but which are not considered part of the archive itself. At the top level (see Table 19) are the checksum and manifest files that describe the contents of the entire archive volume. The directory is divided into subdirectories in the same manner as the DATA directory. The two levels of division are based on time; data are organized into yearly subdirectories, which are further divided into a number of daily sub-subdirectories. The naming convention for the yearly directories is \textit{yyyy}, and for the daily directories it is \textit{yyyyddd}, where \textit{ddd} is the three-digit day of year. For example, all data for the year 2009 are contained below the directory 2009, with data for Jan 1 2009 UTC found in the subdirectory 2009/2009001, and so on.

Included in the subdirectories (see Table 20) are those SPICE kernels that were used to process the data files. The file names are as received from the LRO MOC and may not therefore obey PDS conventions. To reprocess the CRaTER data, users are advised to check with the PDS NAIF Node for the latest versions of the kernel files.

Besides the subdirectories, the EXTRAS directory may also contain additional files that were not anticipated when the archive structure was defined. These files will be described in INDXINFO.TXT and in the ERRATA.TXT file in the root directory of the archive.

Table 19: EXTRAS subdirectory contents

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDXINFO.TXT</td>
<td>A description of the contents of this directory</td>
</tr>
<tr>
<td>CHECKSUM.LBL</td>
<td>A PDS detached label that describes CHECKSUM.TXT</td>
</tr>
<tr>
<td>CHECKSUM.TXT</td>
<td>A file containing a list of all files on the current volume, along with their MD5 checksums</td>
</tr>
<tr>
<td>MANIFEST.LBL</td>
<td>A PDS detached label that describes MANIFEST.TXT</td>
</tr>
<tr>
<td>MANIFEST.TXT</td>
<td>A file containing a list of all files on the current volume</td>
</tr>
<tr>
<td>\textit{yyyy}</td>
<td>Directories containing files relevant to year \textit{yyyy}</td>
</tr>
</tbody>
</table>

Table 20: EXTRAS/yyyy/yyyyddd subdirectory contents

<table>
<thead>
<tr>
<th>Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRO_CLKCOR_\textit{yyyyddd}_Vvv.tsc</td>
<td>SLCK Clock Correlation</td>
</tr>
<tr>
<td>CRAT_SCHK_\textit{yyyyddd}_nnnnnn.dat</td>
<td>Spacecraft Housekeeping Data</td>
</tr>
<tr>
<td>LROATS_\textit{yyyyddd}_Vvv.txt</td>
<td>Daily Command Load Report</td>
</tr>
<tr>
<td>LRO_EvtKer_\textit{yyyyddd}_Vvv.te</td>
<td>Event Kernel</td>
</tr>
<tr>
<td>LRO_FRAMES_\textit{yyyyddd}_Vvv.tf</td>
<td>Frame Kernels</td>
</tr>
<tr>
<td>FDF35_\textit{yyyyddd}_yyyyddd_nnn.bc</td>
<td>Definitive Spacecraft Orientation (CK)</td>
</tr>
<tr>
<td>CRAT_\textit{yyyyddd}_nnnnnn_hk.txt</td>
<td>CRaTER Housekeeping Summary</td>
</tr>
<tr>
<td>CRAT_\textit{yyyyddd}_nnnnnn_sci.txt</td>
<td>CRaTER Raw Measurement Summary</td>
</tr>
<tr>
<td>FDF29_\textit{yyyyddd}_yyyyddd_nnn.bsp</td>
<td>Definitive Spacecraft Ephemeris (SPK)</td>
</tr>
<tr>
<td>TBD</td>
<td>Planetary Ephemeris (SPK)</td>
</tr>
<tr>
<td>TBD</td>
<td>Leap Second Kernel (LSK)</td>
</tr>
<tr>
<td>TBD</td>
<td>Generic Planetary Constants (PCK)</td>
</tr>
</tbody>
</table>
4.8 INDEX directory

The INDEX.TAB file contains a listing of all data products on the archive volume. The index (INDEX.TAB) and index information (INDXINFO.TXT) files are required by the PDS volume standards. The format of these ASCII files is described in §5.2.5. An online and web-accessible index file will be available at the PPI Node while data volumes are being produced.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDXINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>INDEX.LBL</td>
<td>A PDS detached label that describes INDEX.TAB</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>INDEX.TAB</td>
<td>A table listing all CRaTER data products on this volume</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>

4.9 LABEL directory

The LABEL directory contains format files (*.FMT) that describe the contents of the CRaTER files in the DATA subdirectories. They are themselves described by a LABINFO.TXT file.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRAT_L0_HDR.FMT</td>
<td>Bit-level description of Level 0 packet headers</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L0_HK.FMT</td>
<td>Bit-level description of Level 0 housekeeping records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L0_PRI.FMT</td>
<td>Bit-level description of Level 0 primary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L0_SEC.FMT</td>
<td>Bit-level description of Level 0 secondary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L1_HDR.FMT</td>
<td>Byte-level description of Level 1 housekeeping records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L1_PRI.FMT</td>
<td>Byte-level description of Level 1 primary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L1_SEC.FMT</td>
<td>Byte-level description of Level 1 secondary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L2_HDR.FMT</td>
<td>Byte-level description of Level 2 housekeeping records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L2_PRI.FMT</td>
<td>Byte-level description of Level 2 primary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRAT_L2_SEC.FMT</td>
<td>Byte-level description of Level 2 secondary science records</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>LABINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>LROHDR.FMT</td>
<td>Bit-level description of 64-byte Level 0 file headers</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>

These files are used by several PDS software tools, e.g., NASAView, tbtool, etc., to browse the data products through their PDS labels. This is not true, however, for the Level 0 Primary Science product, since it contains varying-length records that cannot be defined by the PDS Object Definition Language used by the FMT files. The CRAT_L0_PRI.FMT file therefore contains a description of a maximum-length record (12-byte header followed by 432-byte data array), which may be useful to some future software development. Meanwhile, PERL and C++ code that can access all CRaTER products are located in the SOFTWARE directory (see CRATLIST.CPP and CRATLIST.PL).
4.10 SOFTWARE directory

The SOFTWARE directory (see Table 23) contains software used to display CRaTER Level 0 data. Since this software was developed exclusively at MIT and BU, and relates only to the manipulation of scientific data, it is in the public domain and exempt from export regulations.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOFTINFO.TXT</td>
<td>A description of the contents of this directory</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATLIST.CPP</td>
<td>C++ source code that, when compiled and linked with the CRaTER object library, lists the contents of CRaTER Level 0 data files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATLIST.DAT</td>
<td>Calibration data used by CRATLIST.PL</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATLIST.PL</td>
<td>PERL program to list the contents of CRaTER Level 0 data files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.CPP</td>
<td>C++ functions to support the CRaTER object library</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.H</td>
<td>C++ header file defining the CRaTER object library</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.HTM</td>
<td>Description of CRATER_LIB routines in HTML format</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.LBL</td>
<td>PDS label file describing CRATER_LIB.PDF</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.MAN</td>
<td>Description of CRATER_LIB routines in roff format</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_LIB.PDF</td>
<td>Manual describing the CRaTER object library</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_LIB.CPP</td>
<td>C++ object library to read CRaTER Level 0 files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_LIB.H</td>
<td>C++ header file defining CRaTER Level 0 record formats and input classes</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_LIB.HTM</td>
<td>Description of CRATER_L0_LIB (HTML format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_LIB.MAN</td>
<td>Description of CRATER_L0_LIB (roff format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_OUT.CPP</td>
<td>C++ object library to write CRaTER Level 0 files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_OUT.H</td>
<td>C++ header file defining CRaTER Level 0 output classes</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_OUT.HTM</td>
<td>Description of CRATER_L0_OUT (HTML format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L0_OUT.MAN</td>
<td>Description of CRATER_L0_OUT (roff format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L1_LIB.CPP</td>
<td>C++ object library to manipulate CRaTER Level 1 files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L1_LIB.H</td>
<td>C++ header file defining CRaTER Level 1 record formats and classes</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L1_LIB.HTM</td>
<td>Description of CRATER_L1_LIB (HTML format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L1_LIB.MAN</td>
<td>Description of CRATER_L1_LIB (roff format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L2_LIB.CPP</td>
<td>C++ object library to manipulate CRaTER Level 2 files</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L2_LIB.H</td>
<td>C++ header file defining CRaTER Level 2 record formats and classes</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L2_LIB.HTM</td>
<td>Description of CRATER_L2_LIB (HTML format)</td>
<td>CRaTER team</td>
</tr>
<tr>
<td>CRATER_L2_LIB.MAN</td>
<td>Description of CRATER_L2_LIB (roff format)</td>
<td>CRaTER team</td>
</tr>
</tbody>
</table>
5 Archive volume format

This section describes the format of CRaTER standard archive volumes. Data that comprise the CRaTER standard product archives will be formatted in accordance with PDS specifications [see Planetary Science Data Dictionary, PDS Archiving Guide, and PDS Standards Reference in §2.6].

5.1 Volume format

Although the CRaTER team does not control the volume format to be used by the PDS, it is necessary to define the format in which the data sets are to be transmitted via network from the SOC to the PPI node. This will be in the form of compressed tar archives, as created by the open source gtar program. Pathnames, in lower-case letters only, will be relative to the ROOT directory, e.g., “./data”, “./index”, etc.

5.2 File formats

The following section describes file formats for the kinds of files contained on archive volumes. For more information, see the PDS Archive Preparation Guide [see §2.6].

5.2.1 Document files

Document files with a TXT extension exist in nearly all directories. They are ASCII files with embedded PDS labels. All ASCII document files contain 80-byte fixed-length records, with a carriage return character (ASCII 13) in the 79th byte and a line feed character (ASCII 10) in the 80th byte. This format allows the files to be read by many operating systems, e.g., UNIX, MacOSX, Windows, etc.

In general, documents are provided in ASCII text format. However, some documents in the DOCUMENT directory contain formatting and figures that cannot be rendered as ASCII text. Hence these documents are also given in additional formats such as hypertext, Microsoft Word, and Adobe Acrobat (PDF). Hypertext files contains ASCII text plus hypertext mark-up language (HTML) commands that enable them to be viewed in a web browser such as mozilla or MS Internet Explorer. Hypertext documents may reference ancillary files, such as images, that are incorporated into the document by the web browser.

5.2.2 Tabular files

Tabular files (TAB extension) exist in the DATA and INDEX directories. Tabular files are ASCII files formatted for direct reading into database management systems on various computers. Columns are fixed length, separated by commas or white space, and character fields are enclosed in double quotation marks ("). Character fields are padded with spaces to keep quotation marks in the same columns of successive records. Character fields are left justified, and numeric fields are right justified. The “start byte” and “bytes” values listed in the labels do not include the commas between fields or the quotation marks surrounding character fields. The records are of fixed length, and the last two bytes of each record contain the ASCII carriage return and line feed characters. This line format allows a table to be treated as a fixed length record file on computers that support this file type and as a text file with embedded line delimiters on those that don't support it.
Detached PDS label files will describe all tabular files. A detached label file has the same name as the data file it describes, but with the extension LBL. For example, the file INDEX.TAB is accompanied by the detached label file INDEX.LBL in the same directory.

5.2.3 PDS labels

All data files in the CRaTER Standard Product Archive Collection have associated detached PDS labels [see the *Planetary Science Data Dictionary* and the *PDS Standards Reference* in §2.6]. These label files are named using the same prefix as the data file together with an LBL extension.

A PDS label, whether embedded or detached from its associated file, provides descriptive information about the associated file. The PDS label is an object-oriented structure consisting of sets of “keyword = value” declarations. The object that the label refers to (e.g. IMAGE, TABLE, etc.) is denoted by a statement of the form:

```
^object = location
```

in which the carat character (^, also called a pointer in this context) indicates where to find the object. In a PDS label, the location denotes the name of the file containing the object, along with the starting record or byte number, if there is more than one object in the file. For example:

```
^HEADER = ("98118.TAB", 1)
^TABLE = ("98118.TAB", 1025 <BYTES>)
```

indicates that the HEADER object begins at record 1 and that the TABLE object begins at byte 1025 of the file 98118.TAB. The file 98118.TAB must be located in the same directory as the detached label file.

Below is a list of the possible formats for the `^object` definition in labels in this product.

```
^object = n
^object = n <BYTES>
^object = "filename.ext"
^object = ("filename.ext", n)
^object = ("filename.ext", n <BYTES>)
```

where

- `n` is the starting record or byte number of the object, counting from the beginning of the file (record 1, byte 1),
- `<BYTES>` indicates that the number given is in units of bytes (the default is records),
- `filename` is the up-to-27-character, alphanumeric upper-case file name,
- `ext` is the up-to-3-character upper-case file extension,
- and all detached labels contain ASCII records that terminate with a carriage return followed by a line feed (13, 10). This allows the files to be read by most computer operating systems, e.g., UNIX, MacOS, MSWindows, etc.

Examples of PDS labels required for the CRaTER archive are shown in Appendix B.
5.2.4 Catalog files

Catalog files (extension CAT) exist in the Root and CATALOG directories. They are plain text files formatted in an object-oriented structure consisting of sets of “keyword = value” declarations.

5.2.5 Index files

The PDS team provides PDS index files. The format of these files is described in this SIS document for completeness.

A PDS index table contains a listing of all data products on an archive volume. When a data product is described by a detached PDS label, the index file points to the label file, which in turn points to the data file. When a data product is described by an attached PDS label, the index file points directly to the data product. A PDS index is an ASCII table composed of required columns and optional columns (user defined). When values are constant across an entire volume, it is permissible to promote the value out of the table and into the PDS label for the index table.

To facilitate users’ searches of the CRaTER data submission, a few optional columns will be included in the index table. In particular, the file start and stop times will be included. Table 24 contains a description of the CRaTER archive volume index files. Index files are by definition fixed length ASCII files containing comma-delimited fields. Character strings are quoted using double quotes, and left justified in their field, followed where necessary by trailing blanks. The “Start Byte” column gives the location of the first byte (counting from 1) of the column within the file, skipping over delimiters and quotation marks.

Table 24: Format of index files

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Start Byte</th>
<th>Bytes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILE_NAME</td>
<td>2</td>
<td>31</td>
<td>Name of product file within a DATA/yyyyyddd directory.</td>
</tr>
<tr>
<td>PATH_NAME</td>
<td>36</td>
<td>50</td>
<td>The full specification of file name and the path to the PDS label file that describes the product, relative to the root of the archive volume.</td>
</tr>
<tr>
<td>START_TIME</td>
<td>88</td>
<td>23</td>
<td>Time (UTC) of the first record in the data file.</td>
</tr>
<tr>
<td>STOP_TIME</td>
<td>112</td>
<td>23</td>
<td>Time (UTC) of the last record in the data file.</td>
</tr>
<tr>
<td>STANDARD_DATA_PRODUCT_ID</td>
<td>137</td>
<td>12</td>
<td>The “type” of the data file. (see Table 6)</td>
</tr>
<tr>
<td>DATA_SET_ID</td>
<td>152</td>
<td>40</td>
<td>The PDS ID of the data set of which this file is a member. (see Table 11)</td>
</tr>
<tr>
<td>PRODUCT_CREATION_DATE</td>
<td>195</td>
<td>8</td>
<td>Date when the product was delivered to PDS.</td>
</tr>
</tbody>
</table>
5.2.6 Level 0 data files

As described in Section 2.3.1, the raw instrument data consist of three data packet types, recorded onboard in two files: one containing primary science packets, the other containing secondary science and housekeeping packets. During ground processing, these files are sorted into three sets of Level 0 files, one for each packet type. Each file begins with a 64-byte header, described in Table 25, followed by one or more data records as described in Table 26 to Table 28. Each record begins with a 12-byte header described in Table 29. All fields are to be interpreted as unsigned integers with their most significant bits recorded in the lowest byte offset, except FileName, which is a null-terminated array of ASCII characters.

Table 25: Format of Level 0 binary file header records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Length (bits)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>32</td>
<td>FileID</td>
<td>Numerical file identifier (200=Primary Science, 201=Housekeeping, 202=Secondary Science)</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>32</td>
<td>Spare</td>
<td>Spare</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>32</td>
<td>StartTimeSec</td>
<td>S/C time (seconds from Jan 1 2001 UTC) of the first data record</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>32</td>
<td>StartTimeSubSec</td>
<td>S/C fractional time (LSB = 2⁻³² sec) of the first record</td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>32</td>
<td>StopTimeSec</td>
<td>S/C time (seconds from Jan 1 2001 UTC) of the last data record</td>
</tr>
<tr>
<td>20</td>
<td>160</td>
<td>32</td>
<td>StopTimeSubSec</td>
<td>S/C fractional time (LSB = 2⁻³² sec) of the last record</td>
</tr>
<tr>
<td>24</td>
<td>192</td>
<td>320</td>
<td>FileName</td>
<td>Product file name, right-padded with NULs, e.g., “CRAT_L0_PRI_yyyyyyy_vnn.DAT”</td>
</tr>
</tbody>
</table>

Table 26: Format of Level 0 primary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Length (bits)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>96</td>
<td>Header</td>
<td>Primary & Secondary Headers, ApId=120 (see Table 29)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>n612</td>
<td>Event[n][6]</td>
<td>Signals recorded in detectors 1 to 6 as a result of n single-particle events (0 ≤ n ≤ 48). These records are of varying length, which is recorded in the PacketLength field of the Header structure described in Table 29</td>
</tr>
</tbody>
</table>

Table 27: Format of Level 0 secondary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Length (bits)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>96</td>
<td>Header</td>
<td>Primary & Secondary Headers, ApId=121 (see Table 29)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>1</td>
<td>BiasCtrl</td>
<td>Detector Bias Delayed Control (1=enabled)</td>
</tr>
<tr>
<td>12</td>
<td>97</td>
<td>1</td>
<td>BiasCmd</td>
<td>Detector Bias Voltage (1=on)</td>
</tr>
<tr>
<td>12</td>
<td>98</td>
<td>1</td>
<td>CalLow</td>
<td>Electrical Calibration Range Low (1=enabled)</td>
</tr>
<tr>
<td>12</td>
<td>99</td>
<td>1</td>
<td>CalHigh</td>
<td>Electrical Calibration Range High (1=enabled)</td>
</tr>
<tr>
<td>12</td>
<td>100</td>
<td>1</td>
<td>CalRate</td>
<td>Calibration Rate (1=1953 events/sec; 0=8 events/sec)</td>
</tr>
<tr>
<td>12</td>
<td>101</td>
<td>6*1</td>
<td>ProcDFlag[6]</td>
<td>Detector Processing Enabled (1=enabled)</td>
</tr>
<tr>
<td>Byte</td>
<td>Length (bits)</td>
<td>Name</td>
<td>Description</td>
<td>Units†</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--------------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>0</td>
<td>96</td>
<td>Header</td>
<td>Primary & Secondary Headers, ApId=122 (see Table 29)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>FPGA_SN</td>
<td>FPGA revision code</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>V28bus</td>
<td>Spacecraft 28VDC bus voltage</td>
<td>0.00101*DN (V)</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>V5digital</td>
<td>+5VDC digital regulated voltage</td>
<td>0.00200*DN (V)</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>VAnalog_Err</td>
<td>= 15 if analog power is off (in which case, the remaining housekeeping fields are invalid); =0 otherwise</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>V5plus</td>
<td>+5VDC analog regulated voltage</td>
<td>0.00200*DN (V)</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>V5neg</td>
<td>–5VDC analog regulated voltage</td>
<td>0.00201*DN (V)</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>I28bus</td>
<td>Instrument current drain off spacecraft bus</td>
<td>0.000198*DN (µA)</td>
</tr>
<tr>
<td>22</td>
<td>6*16</td>
<td>BiasCurrent[6]</td>
<td>Detector bias current</td>
<td>0.00050*DN (µA)</td>
</tr>
<tr>
<td>34</td>
<td>16</td>
<td>BiasVoltThin</td>
<td>Thin detector (D1, D3, D5) bias voltage</td>
<td>0.101*DN (V)</td>
</tr>
<tr>
<td>36</td>
<td>16</td>
<td>BiasVoltthick</td>
<td>Thick detector (D2, D4, D6) bias voltage</td>
<td>0.101*DN (V)</td>
</tr>
<tr>
<td>38</td>
<td>16</td>
<td>CalAmp</td>
<td>Electrical calibration voltage amplitude</td>
<td>0.00100*DN (V)</td>
</tr>
<tr>
<td>40</td>
<td>16</td>
<td>LLDThin</td>
<td>Low Level Discriminator voltage for thin detectors (D1, D3, D5)</td>
<td>0.00124*DN – 0.124 (V)</td>
</tr>
<tr>
<td>42</td>
<td>16</td>
<td>LLDThick</td>
<td>Low Level Discriminator voltage for thick detectors (D2, D4, D6)</td>
<td>0.00124*DN – 0.124 (V)</td>
</tr>
<tr>
<td>44</td>
<td>16</td>
<td>Telescope</td>
<td>Temperature of telescope assembly</td>
<td>0.2V5plus – 0.100DN – 273.2 (°C)</td>
</tr>
<tr>
<td>46</td>
<td>16</td>
<td>Tanalog</td>
<td>Temperature of analog electronics</td>
<td>0.2V5plus – 0.100DN – 273.2 (°C)</td>
</tr>
<tr>
<td>48</td>
<td>16</td>
<td>Tdigital</td>
<td>Temperature of digital electronics</td>
<td>0.2V5plus – 0.100DN – 273.2 (°C)</td>
</tr>
<tr>
<td>50</td>
<td>16</td>
<td>Tpower</td>
<td>Temperature of regulate power supply</td>
<td>0.2V5plus – 0.100DN – 273.2 (°C)</td>
</tr>
</tbody>
</table>
Temperature of reference location on telescope wall

$0.2 \times V5plus - 0.100 \times DN - 273.2 \, (^{\circ}C)$

High Sensitivity Radiation monitor voltage

$0.0000125 \times DN \, (\text{Rads})$

Medium Sensitivity Radiation monitor voltage

$0.000320 \times DN \, (\text{Rads})$

Low Sensitivity Radiation monitor voltage

$0.08192 \times DN \, (\text{Rads})$

Temperature of reference location on instrument chassis (ground test only)

$0.1299 \times (4 \times DN - 10000)/(5 - DN/1000) \, (^{\circ}C)$

Flow rate of GN2 purge (ground test only)

$DN - 0.371 \times V5plus + 19 \times (Tref - 20) \, (\text{CuFt/Hr})$

† where “DN” is the unsigned integer value of the current field, $V5plus$ is the value of the $V5plus$ field converted to Volts, and $Tref$ is the telescope wall temperature in °C. These relations between raw DN values and “engineering” units are only approximate. More accurate algorithms are used during pipeline processing to create Level 1 and 2 housekeeping products.

Table 29: Format of Level 0 record header structure

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Length (bits)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td>Version</td>
<td>CCSDS Version Number</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td>PacketType</td>
<td>Packet Type</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>SecHdrFlag</td>
<td>Secondary Header Flag (1=secondary header follows, bytes 6–11)</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>11</td>
<td>AplId</td>
<td>Application Process Identifier (120=primary science; 121=secondary science; 122=housekeeping)</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>2</td>
<td>SegFlags</td>
<td>Packet Segmentation Flags (3=no segmentation)</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>14</td>
<td>SeqCount</td>
<td>Source Sequence Count (separate for each AplId)</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>16</td>
<td>PacketLength</td>
<td>Packet Length (# bytes following primary header – 1)</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>1</td>
<td>Reserved1</td>
<td>Reserved (value=0)</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>31</td>
<td>Time</td>
<td>Spacecraft Time in Seconds (seconds elapsed since 1 January 2001 UT)</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>4</td>
<td>FracTime</td>
<td>Spacecraft Time in Fractional Seconds (1/16 second units)</td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>5</td>
<td>Reserved2</td>
<td>Reserved (value=0)</td>
</tr>
<tr>
<td>11</td>
<td>89</td>
<td>1</td>
<td>TestFlag</td>
<td>Test Mode Flag (1=test enabled)</td>
</tr>
<tr>
<td>11</td>
<td>90</td>
<td>1</td>
<td>OneHertz</td>
<td>External One Hertz time sync pulse (1=not received)</td>
</tr>
<tr>
<td>11</td>
<td>91</td>
<td>5</td>
<td>SerialNumber</td>
<td>Instrument Serial Number</td>
</tr>
</tbody>
</table>
5.2.7 Level 1 data files

Level 1 data files contain the same information as their Level 0 counterparts, but translated into ASCII characters, with one addition: the primary science records contain the detector event energies converted to electron volts, alongside the raw count values from the Level 0 files. There are no header records and the format of the fixed-length, comma delimited, data records are shown in Table 30 to Table 32. The first column contains the byte offset of the start of the data field, and the second column lists the length of the field in bytes. Some fields contain multiple elements, denoted by the number within parentheses in column 3. The byte offset from the beginning of the record to the start of the \(n \)’th element is therefore \(Col_1 + (n-1) \times (Col_2+1) \), where allowance has been made for the comma that follows every element.

Table 30: Format of Level 1 primary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1Hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>Index</td>
<td>I6</td>
<td>N/A</td>
<td>Index of event within the current second</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>Ampl[6]</td>
<td>I4</td>
<td>N/A</td>
<td>Amplitude in Detectors D1 to D6</td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>Energy[6]</td>
<td>E10.4</td>
<td>eV</td>
<td>Energy deposited in Detectors D1 to D6</td>
</tr>
</tbody>
</table>

Table 31: Format of Level 1 secondary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1Hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>BiasCntrl</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Bias Delayed Control (1=enabled)</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>BiasCmd</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Bias Voltage (1=on)</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>CalLow</td>
<td>I1</td>
<td>N/A</td>
<td>Electrical Calibration Range Low (1=enabled)</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>CalHigh</td>
<td>I1</td>
<td>N/A</td>
<td>Electrical Calibration Range High (1=enabled)</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>CalRate</td>
<td>I1</td>
<td>N/A</td>
<td>Calibration Rate (1=1953, 0=8 events/sec)</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>ProcDFlag[6]</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Processing Enabled (1=enabled)</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
<td>LastCmd</td>
<td>I5</td>
<td>N/A</td>
<td>Address of Last Command to CRaTER</td>
</tr>
<tr>
<td>41</td>
<td>5</td>
<td>LastValue</td>
<td>I5</td>
<td>N/A</td>
<td>Contents of Last Command to CRaTER</td>
</tr>
<tr>
<td>47</td>
<td>5</td>
<td>DiscThin</td>
<td>I5</td>
<td>N/A</td>
<td>Low Level Discriminator Setting for Thin Detectors (D1, D3, D5)</td>
</tr>
<tr>
<td>53</td>
<td>5</td>
<td>DiscThick</td>
<td>I5</td>
<td>N/A</td>
<td>Low Level Discriminator Setting for Thick Detectors (D2, D4, D6)</td>
</tr>
<tr>
<td>59</td>
<td>10</td>
<td>Mask[2]</td>
<td>I10</td>
<td>N/A</td>
<td>Discriminator Accept Mask</td>
</tr>
<tr>
<td>81</td>
<td>5</td>
<td>Single[6]</td>
<td>I5</td>
<td>N/A</td>
<td>Detector Singles Counter (D1 to D6)</td>
</tr>
<tr>
<td>117</td>
<td>5</td>
<td>Good</td>
<td>I5</td>
<td>N/A</td>
<td>Good Events Counter</td>
</tr>
<tr>
<td>123</td>
<td>5</td>
<td>Reject</td>
<td>I5</td>
<td>N/A</td>
<td>Rejected Events Counter</td>
</tr>
<tr>
<td>129</td>
<td>5</td>
<td>Total</td>
<td>I5</td>
<td>N/A</td>
<td>Total Events Counter</td>
</tr>
</tbody>
</table>
Table 32: Format of Level 1 housekeeping data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>FPGA_SN</td>
<td>I2</td>
<td>N/A</td>
<td>FPGA revision code</td>
</tr>
<tr>
<td>16</td>
<td>7</td>
<td>V28bus</td>
<td>F7.3</td>
<td>Volts</td>
<td>Spacecraft 28VDC bus voltage</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>V5digital</td>
<td>F7.3</td>
<td>Volts</td>
<td>+5VDC digital regulated voltage</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>VAnalog_Err</td>
<td>I2</td>
<td>N/A</td>
<td>= 15 if analog power is off (in which case, the remaining housekeeping fields are invalid); zero otherwise</td>
</tr>
<tr>
<td>35</td>
<td>7</td>
<td>V5plus</td>
<td>F7.3</td>
<td>Volts</td>
<td>+5VDC analog regulated voltage</td>
</tr>
<tr>
<td>43</td>
<td>7</td>
<td>V5neg</td>
<td>F7.3</td>
<td>Volts</td>
<td>−5VDC analog regulated voltage</td>
</tr>
<tr>
<td>51</td>
<td>7</td>
<td>I28bus</td>
<td>F7.3</td>
<td>Amps</td>
<td>Instrument current drain off spacecraft bus</td>
</tr>
<tr>
<td>59</td>
<td>7</td>
<td>P28bus</td>
<td>F7.3</td>
<td>Watts</td>
<td>Instrument power (V28bus*I28bus)</td>
</tr>
<tr>
<td>107</td>
<td>7</td>
<td>BiasCurrent[6]</td>
<td>F7.3</td>
<td>Amps</td>
<td>Detector bias current</td>
</tr>
<tr>
<td>115</td>
<td>7</td>
<td>BiasVolthin</td>
<td>F7.3</td>
<td>Volts</td>
<td>Thin detector (D1, D3, D5) bias voltage</td>
</tr>
<tr>
<td>123</td>
<td>7</td>
<td>BiasVolthick</td>
<td>F7.3</td>
<td>Volts</td>
<td>Thick detector (D2, D4, D6) bias voltage</td>
</tr>
<tr>
<td>131</td>
<td>7</td>
<td>CalAmp</td>
<td>F7.3</td>
<td>Volts</td>
<td>Electrical calibration voltage amplitude</td>
</tr>
<tr>
<td>139</td>
<td>7</td>
<td>LLDThin</td>
<td>F7.3</td>
<td>Volts</td>
<td>Low Level Discriminator voltage for thin detectors (D1, D3, D5)</td>
</tr>
<tr>
<td>147</td>
<td>7</td>
<td>LLDThick</td>
<td>F7.3</td>
<td>Volts</td>
<td>Low Level Discriminator voltage for thick detectors (D2, D4, D6)</td>
</tr>
<tr>
<td>155</td>
<td>7</td>
<td>Telescope</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of telescope assembly</td>
</tr>
<tr>
<td>163</td>
<td>7</td>
<td>Tanalog</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of analog electronics</td>
</tr>
<tr>
<td>171</td>
<td>7</td>
<td>Tdigital</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of digital electronics</td>
</tr>
<tr>
<td>179</td>
<td>7</td>
<td>Tpower</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of regulate power supply</td>
</tr>
<tr>
<td>187</td>
<td>7</td>
<td>Tref</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of reference location on telescope wall</td>
</tr>
<tr>
<td>195</td>
<td>10</td>
<td>RadHighSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>High Sensitivity Radiation monitor voltage</td>
</tr>
<tr>
<td>206</td>
<td>10</td>
<td>RadMedSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>Medium Sensitivity Radiation monitor voltage</td>
</tr>
<tr>
<td>217</td>
<td>10</td>
<td>RadLowSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>Low Sensitivity Radiation monitor voltage</td>
</tr>
<tr>
<td>228</td>
<td>10</td>
<td>Tprt</td>
<td>E10.4</td>
<td>°C</td>
<td>Temperature of reference location on instrument chassis (ground test only)</td>
</tr>
<tr>
<td>239</td>
<td>10</td>
<td>Purge</td>
<td>E10.4</td>
<td>cuFt/hr</td>
<td>Flow rate of GN2 purge (ground test only)</td>
</tr>
</tbody>
</table>

* The external representation of the field value as it would appear in a Fortran FORMAT statement.

5.2.8 Level 2 data files

Level 2 data files contain the same information as their Level 1 counterparts, with the following additions: the primary science records contain the Lineal Energy Transport of each detector event and the secondary science records contain geometrical information relating to the location and direction of the CRaTER instrument at one second intervals. In addition, all fields in the housekeeping files have been “conditioned”, i.e., averaged over a predetermined time span, after
minimum and maximum values were removed. There are no header records and the format of the
fixed-length, comma delimited, data records are shown in Table 33 to Table 35. The first column
contains the byte offset of the start of the data field, and the second column lists the length of the
field in bytes. Some fields contain multiple elements, denoted by the number within parentheses
in column 3. The byte offset from the beginning of the record to the start of the \(n \)’th element is
therefore \(\text{Col}_1+(n-1)\times(\text{Col}_2+1) \), where allowance has been made for the comma that follows
every element.

Table 33: Format of Level 2 primary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1 Hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>Time</td>
<td>A19</td>
<td>N/A</td>
<td>1 Hz Timing Pulse time in UTC</td>
</tr>
<tr>
<td>35</td>
<td>6</td>
<td>Index</td>
<td>I6</td>
<td>N/A</td>
<td>Index of event within the current second</td>
</tr>
<tr>
<td>42</td>
<td>4</td>
<td>Ampl[6]</td>
<td>I4</td>
<td>N/A</td>
<td>Amplitude in Detectors D1 to D6</td>
</tr>
<tr>
<td>72</td>
<td>10</td>
<td>Energy[6]</td>
<td>E10.4</td>
<td>eV</td>
<td>Energy deposited in Detectors D1 to D6</td>
</tr>
<tr>
<td>138</td>
<td>10</td>
<td>LET[6]</td>
<td>E10.4</td>
<td>eV/(\mu)m</td>
<td>Lineal Energy Transfer in silicon in Detectors D1 to D6</td>
</tr>
<tr>
<td>204</td>
<td>10</td>
<td>DQI</td>
<td>E10.4</td>
<td>N/A</td>
<td>Data quality indicator</td>
</tr>
<tr>
<td>215</td>
<td>1</td>
<td>Flags[32]</td>
<td>I1</td>
<td>N.A</td>
<td>Flag fields</td>
</tr>
</tbody>
</table>

Table 34: Format of Level 2 secondary science data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1 Hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>Time</td>
<td>A19</td>
<td>N/A</td>
<td>1 Hz Timing Pulse time in UTC</td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>BiasCntrl</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Bias Delayed Control (1=enabled)</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>BiasCmd</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Bias Voltage (1=on)</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>CalLow</td>
<td>I1</td>
<td>N/A</td>
<td>Electrical Calibration Range Low (1=enabled)</td>
</tr>
<tr>
<td>41</td>
<td>1</td>
<td>CalHigh</td>
<td>I1</td>
<td>N/A</td>
<td>Electrical Cal. Range High (1=enabled)</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>CalRate</td>
<td>I1</td>
<td>N/A</td>
<td>Calibration Rate (1=1953, 0=8 events/sec)</td>
</tr>
<tr>
<td>45</td>
<td>1</td>
<td>ProcDFlag[6]</td>
<td>I1</td>
<td>N/A</td>
<td>Detector Processing Enabled (1=enabled)</td>
</tr>
<tr>
<td>57</td>
<td>5</td>
<td>LastCmd</td>
<td>I5</td>
<td>N/A</td>
<td>Address of Last Command to CRaTER</td>
</tr>
<tr>
<td>63</td>
<td>5</td>
<td>LastValue</td>
<td>I5</td>
<td>N/A</td>
<td>Contents of Last Command to CRaTER</td>
</tr>
<tr>
<td>69</td>
<td>5</td>
<td>DiscThin</td>
<td>I5</td>
<td>N/A</td>
<td>Low Level Discriminator Setting for Thin Detectors (D1, D3, D5)</td>
</tr>
<tr>
<td>75</td>
<td>5</td>
<td>DiscThick</td>
<td>I5</td>
<td>N/A</td>
<td>Low Level Discriminator Setting for Thick Detectors (D2, D4, D6)</td>
</tr>
<tr>
<td>81</td>
<td>10</td>
<td>Mask[2]</td>
<td>I10</td>
<td>N/A</td>
<td>Discriminator Accept Mask</td>
</tr>
<tr>
<td>103</td>
<td>5</td>
<td>Single[6]</td>
<td>I5</td>
<td>N/A</td>
<td>Detector Singles Counter (D1 to D6)</td>
</tr>
<tr>
<td>139</td>
<td>5</td>
<td>Good</td>
<td>I5</td>
<td>N/A</td>
<td>Good Events Counter</td>
</tr>
<tr>
<td>145</td>
<td>5</td>
<td>Reject</td>
<td>I5</td>
<td>N/A</td>
<td>Rejected Events Counter</td>
</tr>
<tr>
<td>151</td>
<td>5</td>
<td>Total</td>
<td>I5</td>
<td>N/A</td>
<td>Total Events Counter</td>
</tr>
<tr>
<td>265</td>
<td>11</td>
<td>Altitude</td>
<td>E11.4</td>
<td>Km</td>
<td>Altitude above lunar surface (J2000)</td>
</tr>
</tbody>
</table>
Nadir
E11.4 Deg
Angle between CRaTER boresight and nadir

GSEVec[3]
E11.4 Km
Sun to CRaTER vector (GSE coordinates)

GSMVec[3]
E11.4 Km
Earth to CRaTER vector (GSM coordinates)

Latitude
E11.4 Deg
Selenocentric S/C latitude (IAU)

Longitude
E11.4 Deg
Selenocentric S/C longitude (IAU)

Table 35: Format of Level 2 housekeeping data file records

<table>
<thead>
<tr>
<th>Byte</th>
<th>Length (bytes)</th>
<th>Name</th>
<th>Fmt*</th>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9</td>
<td>Seconds</td>
<td>I9</td>
<td>Secs</td>
<td>Interval from 0h UT Jan 1 2001 to 1 Hz pulse</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>Fract</td>
<td>I2</td>
<td>Sec/100</td>
<td>Hundredths of a second from 1 Hz pulse</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>Time</td>
<td>A19</td>
<td>N/A</td>
<td>1 Hz Timing Pulse time in UTC</td>
</tr>
<tr>
<td>35</td>
<td>2</td>
<td>FPGA_SN</td>
<td>I2</td>
<td>N/A</td>
<td>FPGA revision code</td>
</tr>
<tr>
<td>38</td>
<td>7</td>
<td>V28bus</td>
<td>F7.3</td>
<td>Volts</td>
<td>Spacecraft 28VDC bus voltage</td>
</tr>
<tr>
<td>46</td>
<td>7</td>
<td>V5digital</td>
<td>F7.3</td>
<td>Volts</td>
<td>+5VDC digital regulated voltage</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>V Analog_Err</td>
<td>I2</td>
<td>N/A</td>
<td>= 15 if analog power is off (& remaining H/K fields are invalid); zero otherwise</td>
</tr>
<tr>
<td>57</td>
<td>7</td>
<td>V5plus</td>
<td>F7.3</td>
<td>Volts</td>
<td>+5VDC analog regulated voltage</td>
</tr>
<tr>
<td>65</td>
<td>7</td>
<td>V5neg</td>
<td>F7.3</td>
<td>Volts</td>
<td>−5VDC analog regulated voltage</td>
</tr>
<tr>
<td>73</td>
<td>7</td>
<td>I28bus</td>
<td>F7.3</td>
<td>Amps</td>
<td>Instrument current drain off spacecraft bus</td>
</tr>
<tr>
<td>81</td>
<td>7</td>
<td>P28bus</td>
<td>F7.3</td>
<td>Watts</td>
<td>Instrument power (V_{28bus} \times I_{28bus})</td>
</tr>
<tr>
<td>129</td>
<td>7</td>
<td>BiasCurrent[6]</td>
<td>F7.3</td>
<td>Amps</td>
<td>Detector bias current</td>
</tr>
<tr>
<td>137</td>
<td>7</td>
<td>BiasVoltThin</td>
<td>F7.3</td>
<td>Volts</td>
<td>Thin detector (D1, D3, D5) bias voltage</td>
</tr>
<tr>
<td>145</td>
<td>7</td>
<td>BiasVolThick</td>
<td>F7.3</td>
<td>Volts</td>
<td>Thick detector (D2, D4, D6) bias voltage</td>
</tr>
<tr>
<td>153</td>
<td>7</td>
<td>CalAmp</td>
<td>F7.3</td>
<td>Volts</td>
<td>Electrical calibration voltage amplitude</td>
</tr>
<tr>
<td>161</td>
<td>7</td>
<td>LLDThin</td>
<td>E10.4</td>
<td>eV</td>
<td>Low Level Discriminator energy for thin detectors (D1, D3, D5)</td>
</tr>
<tr>
<td>169</td>
<td>7</td>
<td>LLDThick</td>
<td>E10.4</td>
<td>eV</td>
<td>Low Level Discriminator energy for thick detectors (D2, D4, D6)</td>
</tr>
<tr>
<td>177</td>
<td>7</td>
<td>Telescope</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of telescope assembly</td>
</tr>
<tr>
<td>185</td>
<td>7</td>
<td>Tanalog</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of analog electronics</td>
</tr>
<tr>
<td>193</td>
<td>7</td>
<td>Tdigital</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of digital electronics</td>
</tr>
<tr>
<td>201</td>
<td>7</td>
<td>Tpower</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of regulate power supply</td>
</tr>
<tr>
<td>209</td>
<td>7</td>
<td>Tref</td>
<td>F7.2</td>
<td>°C</td>
<td>Temperature of reference location on telescope wall</td>
</tr>
<tr>
<td>217</td>
<td>10</td>
<td>RadHighSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>High Sensitivity Radiation monitor voltage</td>
</tr>
<tr>
<td>228</td>
<td>10</td>
<td>RadMedSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>Medium Sensitivity Radiation monitor volts</td>
</tr>
<tr>
<td>239</td>
<td>10</td>
<td>RadLowSens</td>
<td>E10.4</td>
<td>Rads</td>
<td>Low Sensitivity Radiation monitor voltage</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>Tprt</td>
<td>E10.4</td>
<td>°C</td>
<td>Temperature of reference location on instrument chassis (ground test only)</td>
</tr>
<tr>
<td>261</td>
<td>10</td>
<td>Purge</td>
<td>E10.4</td>
<td>cuFt/hr</td>
<td>Flow rate of GN2 purge (ground test only)</td>
</tr>
<tr>
<td>272</td>
<td>10</td>
<td>Radtotal</td>
<td>E10.4</td>
<td>Rads</td>
<td>Cumulative instrument radiation dosage</td>
</tr>
<tr>
<td>283</td>
<td>10</td>
<td>BiasEnergy[6]</td>
<td>E10.4</td>
<td>Volts</td>
<td>Detector bias energies</td>
</tr>
</tbody>
</table>

* The external representation of the field value as it would appear in a Fortran FORMAT statement.
Appendix A Support staff and cognizant persons

Table 36: Archive collection support staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRaTER team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prof. Harlan Spence</td>
<td>Boston University Department of Astronomy CAS Room 410 725 Commonwealth Ave. Boston MA 02215 USA</td>
<td>+001 617 353-7421</td>
<td>spence@bu.edu</td>
</tr>
<tr>
<td>Principal Investigator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Justin Kasper</td>
<td>Harvard–Smithsonian Astrophysical Observatory, MS–58, 60 Garden St, Cambridge MA 02138 USA</td>
<td>+001 617 496-7875</td>
<td>jkasper@cfa.harvard.edu</td>
</tr>
<tr>
<td>Project Scientist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Michael Golightly</td>
<td>Boston University Department of Astronomy CAS Room 406 725 Commonwealth Ave. Boston MA 02215 USA</td>
<td>+001 617 358-4864</td>
<td>mgolight@bu.edu</td>
</tr>
<tr>
<td>Deputy Project Scientist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOC Lead (from 2008)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Peter Ford</td>
<td>MIT 37-571 70 Vassar Street Cambridge MA 02139-4307 USA</td>
<td>+001 617 253-6485</td>
<td>pgf@space.mit.edu</td>
</tr>
<tr>
<td>SOC Lead (through 2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Robert Goeke</td>
<td>MIT NE80-6099 1 Hampshire Street Cambridge MA 02139 USA</td>
<td>+001 617 253-1910</td>
<td>goeke@space.mit.edu</td>
</tr>
<tr>
<td>Project Engineer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ms Joan Quigley</td>
<td>MIT 37-662C 70 Vassar Street Cambridge MA 02139-4307 USA</td>
<td>+001 617 253-4287</td>
<td>jcq@space.mit.edu</td>
</tr>
<tr>
<td>Data Processing Developer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCLA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Steven Joy</td>
<td>IGPP, University of California 405 Hilgard Avenue Los Angeles, CA 90095-1567 USA</td>
<td>+001 310 825 3506</td>
<td>sjoy@igpp.ucla.edu</td>
</tr>
<tr>
<td>PPI Operations Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mr. Mark Sharlow</td>
<td>IGPP, University of California 405 Hilgard Avenue Los Angeles, CA 90095-1567 USA</td>
<td>+001 310 206 6073</td>
<td>msharlow@igpp.ucla.edu</td>
</tr>
<tr>
<td>PPI Data Engineer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix B PDS label files

All CRaTER instrument data files are accompanied by PDS label files, possessing the same names as the files they describe, but with the extension LBL. The basic content for these label files is as follows, where the NOTE field is reserved for product-specific comments:

B.1 Level 0 Primary Science Data Label File

```plaintext
PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-2-EDR-RAWDATA-V1.0"
DATA_SET_NAME = "LRO CRATER RAW LUNAR DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L0_PRI"
PRODUCT_ID = "CRAT_L0_PRI_yyyymmdd_Vnn"
PRODUCT_TYPE = EDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"
RECORD_FORMAT = UNDEFINED
FILE_RECORDS = nnnnn
START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"
INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged
Particle detectors embedded within structures
of aluminum and plastic. It investigates the
effect of galactic cosmic rays and high-energy
solar particles on tissue-equivalent plastics
as a constraint on models of biological
response to background space radiation."

NOTE = "optional text comment"
^TABLE = "CRAT_L0_PRI_yyyymmdd_Vnn.DAT"
OBJECT = TABLE
   NAME = LROHDR
   INTERCHANGE_FORMAT = BINARY
   BYTES = 64
   ROWS = 1
   COLUMNS = 7
   ^STRUCTURE = "LROHDR.FMT"
   DESCRIPTION = "LRO standard 64-byte header."
END_OBJECT
^TABLE = ("CRAT_L0_PRI_yyyymmdd_Vnn.DAT",64 <BYTES>)
OBJECT = TABLE
   NAME = CRAT_L0_PRI
   INTERCHANGE_FORMAT = BINARY
   ROWS = nnnnn
   ROW_BYTES = 444
   COLUMNS = 2
   ^STRUCTURE = "CRAT_L0_PRI.FMT"
   DESCRIPTION = "CRaTER Instrument Primary Science packets.
The byte length of each varying-length packet
is 7 plus the value of the fourth 16-bit
```
unsigned MSB integer in the packet."

B.2 Level 0 Secondary Science Data Label File

PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-2-EDR-RAWDATA-V1.0"
DATA_SET_NAME = "LRO CRATER RAW LUNAR DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L0_SEC"
PRODUCT_ID = "CRAT_L0_SEC_yyyyddd_Vnn"
PRODUCT_TYPE = EDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"
RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 46
FILE_RECORDS = nnnnn
START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"
INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged
particle detectors embedded within structures
of aluminum and plastic. It investigates the
effect of galactic cosmic rays and high-energy
solar particles on tissue-equivalent plastics
as a constraint on models of biological
response to background space radiation."

NOTE = "optional text comment"
^TABLE = "CRAT_L0_SEC_yyyyddd_Vnn.DAT"
OBJECT = TABLE
 NAME = LROHDR
 INTERCHANGE_FORMAT = BINARY
 BYTES = 64
 COLUMNS = 7
 ^STRUCTURE = "LROHDR.FMT"
 DESCRIPTION = "LRO standard 64-byte header, followed by 28
NUL bytes (0x00)."
END_OBJECT = TABLE
^TABLE = ("CRAT_L0_SEC_yyyyddd_Vnn.DAT",3)
OBJECT = TABLE
 NAME = CRAT_L0_SEC
 INTERCHANGE_FORMAT = BINARY
 ROWS = nnnnn
 COLUMNS = 9
 ROW_BYTES = 46
 ^STRUCTURE = "CRAT_L0_SEC.FMT"
 DESCRIPTION = "CRaTER Instrument Secondary Science packets."
END_OBJECT = TABLE
END
B.3 Level 0 Housekeeping Data Label File

PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-2-EDR-RAWDATA-V1.0"
DATA_SET_NAME = "LRO CRATER RAW LUNAR DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L0_HK"
PRODUCT_ID = "CRAT_L0_HK_yyyyddd_Vnn"
PRODUCT_TYPE = EDR
PRODUCT_VERSION_ID = "n.n"
MISSION_PHASE = "cccccccc"
FILE_RECORDS = nnnnn
START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"
INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged Particle detectors embedded within structures of aluminum and plastic. It investigates the effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics as a constraint on models of biological response to background space radiation."

NOTE = "optional text comment"

^TABLE = "CRAT_L0_HK_yyyyddd_Vnn.DAT"
OBJECT = TABLE
 INTERCHANGE_FORMAT = BINARY
 BYTES = 64
 ROWS = 1
 COLUMNS = 7
 ^STRUCTURE = "CRAT_L0_HK.FMT"
 DESCRIPTION = "CRaTER Instrument Housekeeping packets."
END_OBJECT = TABLE
^TABLE = ("CRAT_L0_HK_yyyyddd_Vnn.DAT",2)
OBJECT = TABLE
 NAME = CRAT_L0_HK
 INTERCHANGE_FORMAT = BINARY
 ROWS = nnnnn
 COLUMNS = 22
 ROWBYTES = 64
 ^STRUCTURE = "CRAT_L0_HK.FMT"
 DESCRIPTION = "CRaTER Instrument Housekeeping packets."
END_OBJECT = TABLE
END
B.4 Level 1 Primary Science Data Label File

PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-3-CDR_CALIBRATED-V1.0"
DATA_SET_NAME = "LRO CRATER CALIBRATED LUNAR ENERGY DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L1_PRI"
PRODUCT_ID = "CRAT_L1_PRI_yyyyddd_Vnn"
PRODUCT_TYPE = RDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"

RECORD_FORMAT = FIXED_LENGTH
RECORD_BYTES = 118
FILE_RECORDS = nnnnn

START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"

INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged Particle detectors embedded within structures of aluminum and plastic. It investigates the effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics as a constraint on models of biological response to background space radiation."

NOTE = "optional text comment"

^TABLE = "CRAT_L1_PRI_yyyyddd_Vnn.TAB"
OBJECT = TABLE
 NAME = CRAT_L1_PRI
 INTERCHANGE_FORMAT = ASCII
 ROWS = nnnnn
 COLUMNS = 5
 ROW_BYTES = 118
^STRUCTURE = "CRAT_L1_PRI.FMT"
 DESCRIPTION = "CRaTER Instrument Level 1 Primary Science."
END_OBJECT = TABLE

END
B.5 Level 1 Secondary Science Data Label File

PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-3-CDR_CALIBRATED-V1.0"
DATA_SET_NAME = "LRO CRATER CALIBRATED LUNAR ENERGY DATA V1.0"

STANDARD_DATA_PRODUCT_ID = "CRAT_L1_SEC"
PRODUCT_ID = "CRAT_L1_SEC_yyyyddd_Vnn"
PRODUCT_TYPE = RDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 136
FILE_RECORDS = nnnnn
START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = sssssssssss.ss
SPACECRAFT_CLOCK_STOP_COUNT = sssssssssss.ss

INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged Particle detectors embedded within structures of aluminum and plastic. It investigates the effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics as a constraint on models of biological response to background space radiation."

NOTE = "optional text comment"

^TABLE = "CRAT_L1_SEC_yyyyddd_Vnn.TAB"
OBJECT = TABLE
 NAME = CRAT_L1_SEC
 INTERCHANGE_FORMAT = ASCII
 ROWS = nnnnn
 COLUMNS = 17
 ROW_BYTES = 136
 ^STRUCTURE = "CRAT_L1_SEC.FMT"
 DESCRIPTION = "CRaTER Instrument Level 1 Secondary Science."
END_OBJECT = TABLE

END
B.6 Level 1 Housekeeping Data Label File

```
PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-3-CDR_CALIBRATED-V1.0"
DATA_SET_NAME = "LRO CRATER CALIBRATED LUNAR ENERGY DATA V1.0"

STANDARD_DATA_PRODUCT_ID = "CRAT_L1_HK"
PRODUCT_ID = "CRAT_L1_HK_yyyyddd_Vnn"
PRODUCT_TYPE = RDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 252
FILE_RECORDS = nnnnn

START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"

INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged
Particle detectors embedded within structures
of aluminum and plastic. It investigates the
effect of galactic cosmic rays and high-energy
solar particles on tissue-equivalent plastics
as a constraint on models of biological
response to background space radiation."

NOTE = "optional text comment"

^TABLE = "CRAT_L1_HK_yyyyddd_Vnn.TAB"
OBJECT = TABLE
    NAME = CRAT_L1_HK
    INTERCHANGE_FORMAT = ASCII
    ROWS = nnnnn
    COLUMNS = 26
    ROW_BYTES = 252
    ^STRUCTURE = "CRAT_L1_HK.FMT"
    DESCRIPTION = "CRaTER Instrument Level 1 Housekeeping."
END_OBJECT = TABLE
END
```
B.7 Level 2 Primary Science Data Label File

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDS_VERSION_ID</td>
<td>PDS3</td>
</tr>
<tr>
<td>DATA_SET_ID</td>
<td>"LRO-L-CRAT-3/4-DDR-PROCESSED-V1.0"</td>
</tr>
<tr>
<td>DATA_SET_NAME</td>
<td>"LRO CRATER CALIBRATED LUNAR LET DATA V1.0"</td>
</tr>
<tr>
<td>STANDARD_DATA_PRODUCT_ID</td>
<td>"CRAT_L2_PRI"</td>
</tr>
<tr>
<td>PRODUCT_ID</td>
<td>"CRAT_L2_PRI_yyyyddd_Vnn"</td>
</tr>
<tr>
<td>PRODUCT_TYPE</td>
<td>RDR</td>
</tr>
<tr>
<td>PRODUCT_VERSION_ID</td>
<td>"n.n"</td>
</tr>
<tr>
<td>PRODUCT_CREATION_TIME</td>
<td>yyyy-mm-ddThh:mm:ss.sss</td>
</tr>
<tr>
<td>MISSION_PHASE</td>
<td>"cccccccc"</td>
</tr>
<tr>
<td>RECORD_FORMAT</td>
<td>FIXED_LENGTH</td>
</tr>
<tr>
<td>RECORD_BYTES</td>
<td>280</td>
</tr>
<tr>
<td>FILE_RECORDS</td>
<td>nnnnn</td>
</tr>
<tr>
<td>START_TIME</td>
<td>yyyy-mm-ddThh:mm:ss.sss</td>
</tr>
<tr>
<td>STOP_TIME</td>
<td>yyyy-mm-ddThh:mm:ss.sss</td>
</tr>
<tr>
<td>SPACECRAFT_CLOCK_START_COUNT</td>
<td>"ssssssssss.ss"</td>
</tr>
<tr>
<td>SPACECRAFT_CLOCK_STOP_COUNT</td>
<td>"ssssssssss.ss"</td>
</tr>
<tr>
<td>INSTRUMENT_HOST_NAME</td>
<td>"Lunar Reconnaissance Orbiter"</td>
</tr>
<tr>
<td>INSTRUMENT_HOST_ID</td>
<td>"LRO"</td>
</tr>
<tr>
<td>INSTRUMENT_NAME</td>
<td>"Cosmic Ray Telescope for the Effects of Radiation"</td>
</tr>
<tr>
<td>INSTRUMENT_ID</td>
<td>"CRAT"</td>
</tr>
<tr>
<td>INSTRUMENT_SERIAL_NUMBER</td>
<td>n</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"CRaTER consists of a stack of 6 charged Particle detectors embedded within structures of aluminum and plastic. It investigates the effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics as a constraint on models of biological response to background space radiation."</td>
</tr>
</tbody>
</table>

NOTE = "optional text comment"

TABLE	CRAT_L2_PRI_yyyyddd_Vnn.TAB
OBJECT	TABLE
NAME	CRAT_L2_PRI
INTERCHANGE_FORMAT	ASCII
ROWS	nnnnn
COLUMNS	9
ROW_BYTES	280
STRUCTURE	"CRAT_L2_PRI.FMT"
DESCRIPTION	"CRaTER Instrument Level 2 Primary Science."

END_OBJECT = TABLE

END
B.8 Level 2 Secondary Science Data Label File

```
PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-3/4-DDR-PROCESSED-V1.0"
DATA_SET_NAME = "LRO CRATER CALIBRATED LUNAR LET DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L2_SEC"
PRODUCT_ID = "CRAT_L2_SEC_yyyyddd_Vnn"
PRODUCT_TYPE = RDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 386
FILE_RECORDS = nnnnn

START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"

INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged Particle detectors embedded within structures of aluminum and plastic. It investigates the effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics as a constraint on models of biological response to background space radiation."

NOTE = "optional text comment"

^TABLE = "CRAT_L2_SEC_yyyyddd_Vnn.TAB"
OBJECT = TABLE
  NAME = CRAT_L2_SEC
  INTERCHANGE_FORMAT = ASCII
  ROWS = nnnnn
  COLUMNS = 27
  ROW Bytes = 386
  ^STRUCTURE = "CRAT_L2_SEC.FMT"
  DESCRIPTION = "CRaTER Instrument Level 2 Secondary Science."
END_OBJECT = TABLE

END
```
B.9 Level 2 Housekeeping Data Label File

PDS_VERSION_ID = PDS3
DATA_SET_ID = "LRO-L-CRAT-3/4-DDR-PROCESSED-V1.0"
DATA_SET_NAME = "LRO CRATER CALIBRATED LUNAR LET DATA V1.0"
STANDARD_DATA_PRODUCT_ID = "CRAT_L2_HK"
PRODUCT_ID = "CRAT_L2_HK_yyyddd_Vnn"
PRODUCT_TYPE = RDR
PRODUCT_VERSION_ID = "n.n"
PRODUCT_CREATION_TIME = yyyy-mm-ddThh:mm:ss.sss
MISSION_PHASE = "cccccccc"

RECORD_TYPE = FIXED_LENGTH
RECORD_BYTES = 306
FILE_RECORDS = nnnnn

START_TIME = yyyy-mm-ddThh:mm:ss.sss
STOP_TIME = yyyy-mm-ddThh:mm:ss.sss
SPACECRAFT_CLOCK_START_COUNT = "ssssssssss.ss"
SPACECRAFT_CLOCK_STOP_COUNT = "ssssssssss.ss"

INSTRUMENT_HOST_NAME = "Lunar Reconnaissance Orbiter"
INSTRUMENT_HOST_ID = "LRO"
INSTRUMENT_NAME = "Cosmic Ray Telescope for the Effects of Radiation"
INSTRUMENT_ID = "CRAT"
INSTRUMENT_SERIAL_NUMBER = n
DESCRIPTION = "CRaTER consists of a stack of 6 charged
Particle detectors embedded within structures of aluminum and plastic. It investigates the
effect of galactic cosmic rays and high-energy solar particles on tissue-equivalent plastics
as a constraint on models of biological
response to background space radiation."

NOTE = "text comment"

^TABLE = "CRAT_L2_HK_yyyddd_Vnn.TAB"
OBJECT = TABLE
 NAME = CRAT_L2_HK
 INTERCHANGE_FORMAT = ASCII
 ROWS = nnnnn
 COLUMNS = 30
 ROW_BYTES = 306
^STRUCTURE = "CRAT_L2_HK.FMT"
 DESCRIPTION = "CRaTER Instrument Level 2 Housekeeping."
END_OBJECT = TABLE

END
Appendix C Level 0 data record formats

The files comprising CRaTER standard products have record formats that are specified in the PDS label files and in the accompanying FMT files located in the LABEL directory. This section shows the format component of PDS labels for each of the three types of Level 0 binary data file.

C.1 Level 0 64-byte Binary File Header Record (LROHDR.FMT)

OBJECT = COLUMN
 NAME = FILEID
 COLUMN_NUMBER = 1
 START_BYTE = 1
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 MINIMUM = 200
 MAXIMUM = 202
 DESCRIPTION = "Numerical file identifier (primary science = 200, housekeeping = 201, secondary science = 202)."

END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = RESERVED
 COLUMN_NUMBER = 2
 START_BYTE = 5
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 MINIMUM = 0
 MAXIMUM = 0
 DESCRIPTION = "Spare."

END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = STARTTIMESEC
 COLUMN_NUMBER = 3
 START_BYTE = 9
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 UNIT = SECONDS
 MINIMUM = 0
 MAXIMUM = 2147483647
 DESCRIPTION = "Spacecraft time of first packet in the file (seconds from Jan 1 2001 UTC)."

END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = STARTTIMESUBSEC
 COLUMN_NUMBER = 4
 START_BYTE = 13
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
 UNIT = "2^-32 SECONDS"
 MINIMUM = 0
 MAXIMUM = 2147483647
 DESCRIPTION = "Fractional spacecraft time of first packet."

END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = STOPTIMESEC
 COLUMN_NUMBER = 5
 START_BYTE = 17
 BYTES = 4
 DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = SECONDS
MINIMUM = 0
MAXIMUM = 2147483647
DESCRIPTION = "Spacecraft time of last packet in the file (seconds from Jan 1 2001 UTC)."

C.2 Level 0 Binary Record Header (CRAT_L0_HDR.FMT)

OBJECT = BIT_COLUMN
NAME = VERSION
COLUMN_NUMBER = 1
START_BIT = 1
BITS = 3
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "CCSDS Version Number."

OBJECT = BIT_COLUMN
NAME = PACKETTYPE
COLUMN_NUMBER = 2
START_BIT = 4
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "Packet Type."

OBJECT = BIT_COLUMN
NAME = SECHDRFLAG
COLUMN_NUMBER = 3
START_BIT = 5
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 1
MAXIMUM = 1
DESCRIPTION = "Secondary Header Flag (1 = secondary header follows)."
Lunar Reconnaissance Orbiter

CRaTER SPDR and Archive SIS 32-01211 Rev.C

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = APID
COLUMN_NUMBER = 4
START_BIT = 6
BITS = 11
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 120
MAXIMUM = 122
DESCRIPTION = "Application Process ID (120 = primary science; 121 = secondary science; 122 = housekeeping)."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = SEGFLAGS
COLUMN_NUMBER = 5
START_BIT = 17
BITS = 2
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 3
MAXIMUM = 3
DESCRIPTION = "Packet Segmentation Flags (3 = no segmentation)."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = SEQCOUNT
COLUMN_NUMBER = 6
START_BIT = 19
BITS = 14
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 16383
DESCRIPTION = "Sources Sequence Count (separate for each ApId)."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = PACKETLENGTH
COLUMN_NUMBER = 7
START_BIT = 33
BITS = 16
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 441
DESCRIPTION = "Packet Length (number of bytes following primary header - 1)."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = RESERVED1
COLUMN_NUMBER = 8
START_BIT = 49
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 0
DESCRIPTION = "Reserved (value = 0)."

END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = TIME
COLUMN_NUMBER = 9
START_BIT = 50
BITS = 31
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = SECONDS
MINIMUM = 0
MAXIMUM = 2147483647
DESCRIPTION = "Spacecraft Time in Seconds (seconds elapsed since 1 January 2001)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = FRACTIME
 COLUMN_NUMBER = 10
 START_BIT = 81
 BITS = 4
 BIT_DATA_TYPE= MSB_UNSIGNED_INTEGER
 UNIT = "1/16 SECONDS"
 MINIMUM = 0
 MAXIMUM = 15
 DESCRIPTION = "Spacecraft Time in Fractional Seconds (1/16 second units)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = RESERVED2
 COLUMN_NUMBER = 11
 START_BIT = 85
 BITS = 5
 BIT_DATA_TYPE= MSB_UNSIGNED_INTEGER
 MINIMUM = 0
 MAXIMUM = 0
 DESCRIPTION = "Reserved (value = 0)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = TESTFLAG
 COLUMN_NUMBER = 12
 START_BIT = 90
 BITS = 1
 BIT_DATA_TYPE= MSB_UNSIGNED_INTEGER
 MINIMUM = 0
 MAXIMUM = 1
 DESCRIPTION = "Test Mode Flag (1 = test enabled)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = ONEHERTZ
 COLUMN_NUMBER = 13
 START_BIT = 91
 BITS = 1
 BIT_DATA_TYPE= MSB_UNSIGNED_INTEGER
 MINIMUM = 0
 MAXIMUM = 1
 DESCRIPTION = "External One Hertz time sync pulse (1 = not received)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
 NAME = SERIALNUMBER
 COLUMN_NUMBER = 14
 START_BIT = 92
 BITS = 5
 BIT_DATA_TYPE= MSB_UNSIGNED_INTEGER
 MINIMUM = 0
 MAXIMUM = 31
DESCRIPTION = "Instrument Serial Number."
END_OBJECT = BIT_COLUMN

C.3 Level 0 Primary Science Record (CRAT_L0_PRI.FMT)

OBJECT = COLUMN
NAME = HEADER
COLUMN_NUMBER = 1
START_BYTE = 1
BYTES = 12
"STRUCTURE = "CRAT_L0_HDR.FMT"
DATA_TYPE = BIT_STRING
DESCRIPTION = "CCSDS Primary and Secondary Headers, ApId = 120."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = EVENT
COLUMN_NUMBER = 2
START_BYTE = 13
BYTES = 432
ITEM_BYTES = 9
ITEMS = 48
DATA_TYPE = BIT_STRING
DESCRIPTION = "Array of single particle events expressed as signals recorded by detectors 1..6."

OBJECT = BIT_COLUMN
NAME = EVENTAMP1
COLUMN_NUMBER = 1
START_BIT = 12
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 1 as a result of a single particle event."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = EVENTAMP2
COLUMN_NUMBER = 2
START_BIT = 13
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 2 as a result of a single particle event."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = EVENTAMP3
COLUMN_NUMBER = 3
START_BIT = 25
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 3 as a result of a single particle event."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = EVENTAMP4
COLUMN_NUMBER = 4
START_BIT = 37
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 4 as a result of a single particle event."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = EVENTAMP5
COLUMN_NUMBER = 5
START_BIT = 49
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 5 as a result of a single particle event."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = EVENTAMP6
COLUMN_NUMBER = 6
START_BIT = 61
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Signal recorded by detector 6 as a result of a single particle event."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN

C.4 Level 0 Secondary Science Record (CRAT_L0_SEC.FMT)

OBJECT = COLUMN
NAME = HEADER
COLUMN_NUMBER = 1
START_BYTE = 1
BYTES = 12
\^STRUCTURE = "CRAT_L0_HDR.FMT"
DATA_TYPE = BIT_STRING
DESCRIPTION = "CCSDS Primary and Secondary Headers, ApId = 121."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SECONDARYFLGS
COLUMN_NUMBER = 2
START_BYTE = 13
BYTES = 4
DATA_TYPE = BIT_STRING
DESCRIPTION = "Secondary Science Flags."
OBJECT = BIT_COLUMN
NAME = BIASCNTRL
COLUMN_NUMBER = 1
START_BIT = 1
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Detector Bias Delayed Control (1 = enabled)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = BIASCMD
COLUMN_NUMBER = 2
START_BIT = 2
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Detector Bias Voltage (1 = on)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = CALLOW
COLUMN_NUMBER = 3
START_BIT = 3
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Electrical Calibration Range Low (1 = enabled)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = CALHIGH
COLUMN_NUMBER = 4
START_BIT = 4
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Electrical Calibration Range High (1 = enabled)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = CALRATE
COLUMN_NUMBER = 5
START_BIT = 5
BITS = 1
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Electrical Calibration Rate (1 = 1953 events/sec; 0 = 8 events/sec)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = PROCDFLAG
COLUMN_NUMBER = 6
START_BIT = 6
BITS = 6
ITEM_BITS = 1
ITEMS = 6
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 1
DESCRIPTION = "Detector Processing Enabled (1 = enabled)."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = LASTCMD
COLUMN_NUMBER = 7
START_BIT = 12
BITS = 5
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 31
DESCRIPTION = "Address of Last Command to CRaTER."
END_OBJECT = BIT_COLUMN
OBJECT = BIT_COLUMN
NAME = LASTVALUE
COLUMN_NUMBER = 8
START_BIT = 17
BITS = 16
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Contents of Last Command to CRaTER."
END_OBJECT = BIT_COLUMN
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHIN
COLUMN_NUMBER = 3
START_BYTE = 17
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Low Level Discriminator Setting for Thin Detectors (D1, D3, D5)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHICK
COLUMN_NUMBER = 4
START_BYTE = 19
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Low Level Discriminator Setting for Thick Detectors (D2, D4, D6)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MASK
COLUMN_NUMBER = 5
START_BYTE = 21
BYTES = 8
ITEM_BYTES = 4
ITEMS = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Discriminator Accept Mask (64 bits)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SINGLE
COLUMN_NUMBER = 6
START_BYTE = 29
BYTES = 12
ITEM_BYTES = 2
ITEMS = 6
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Detector Singles Counter (one for each of 6 detectors)."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = GOOD
COLUMN_NUMBER = 7
START_BYTE = 41
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Good Events Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = REJECT
COLUMN_NUMBER = 8
START_BYTE = 43
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Rejected Events Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TOTAL
COLUMN_NUMBER = 9
START_BYTE = 45
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 65535
DESCRIPTION = "Total Events Counter."
END_OBJECT = COLUMN

C.5 Level 0 Housekeeping Record (CRAT_L0_HK.FMT)

OBJECT = COLUMN
NAME = HEADER
COLUMN_NUMBER = 1
START_BYTE = 1
BYTES = 12
"STRUCTURE = "CRAT_L0_HDR.FMT"
DATA_TYPE = BIT_STRING
DESCRIPTION = "CCSDS Primary and Secondary Headers, ApId = 122."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CRATV28BUS
COLUMN_NUMBER = 2
START_BYTE = 13
BYTES = 2
DATA_TYPE = BIT_STRING
DESCRIPTION = "FPGA revision code and 28VDC bus voltage."
OBJECT = BIT_COLUMN
NAME = FPGA_SN
COLUMN_NUMBER = 1
START_BIT = 1
BITS = 4
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 15
DESCRIPTION = "FPGA revision code."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = V28BUS
COLUMN_NUMBER = 2
START_BIT = 5
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "VOLTS = 0.00101*DN"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Spacecraft 28VDC bus voltage."
END_OBJECT = BIT_COLUMN

OBJECT = COLUMN
NAME = V5DIGITAL
COLUMN_NUMBER = 3
START_BYTE = 15
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "VOLTS = 0.00200*DN"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "+5VDC digital regulated voltage."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CRATV5PLUS
COLUMN_NUMBER = 4
START_BYTE = 17
BYTES = 2
DATA_TYPE = BIT_STRING
DESCRIPTION = "Analog voltage indicator and -5VDC analog regulated voltage."

OBJECT = BIT_COLUMN
NAME = VANALOGERR
COLUMN_NUMBER = 1
START_BIT = 1
BITS = 4
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
MINIMUM = 0
MAXIMUM = 15
DESCRIPTION = "Analog voltage indicator (0: on; 15: off, so remaining H/K is invalid)."
END_OBJECT = BIT_COLUMN

OBJECT = BIT_COLUMN
NAME = V5PLUS
COLUMN_NUMBER = 2
START_BIT = 5
BITS = 12
BIT_DATA_TYPE = MSB_UNSIGNED_INTEGER
<table>
<thead>
<tr>
<th>UNIT</th>
<th>"VOLTS = 0.00200*DN"</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4095</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"+5VDC analog regulated voltage."</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>BIT_COLUMN</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>NAME</td>
<td>V5NEG</td>
</tr>
<tr>
<td>COLUMN_NUMBER</td>
<td>5</td>
</tr>
<tr>
<td>START_BYTE</td>
<td>19</td>
</tr>
<tr>
<td>BYTES</td>
<td>2</td>
</tr>
<tr>
<td>DATA_TYPE</td>
<td>MSB_UNSIGNED_INTEGER</td>
</tr>
<tr>
<td>UNIT</td>
<td>"VOLTS = -0.00201*DN"</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4095</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"-5VDC analog regulated voltage."</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>NAME</td>
<td>I28BUS</td>
</tr>
<tr>
<td>COLUMN_NUMBER</td>
<td>6</td>
</tr>
<tr>
<td>START_BYTE</td>
<td>21</td>
</tr>
<tr>
<td>BYTES</td>
<td>2</td>
</tr>
<tr>
<td>DATA_TYPE</td>
<td>MSB_UNSIGNED_INTEGER</td>
</tr>
<tr>
<td>UNIT</td>
<td>"AMPS = 0.000198*DN"</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4095</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"Instrument current drain off spacecraft bus."</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>NAME</td>
<td>BIASCURRENT</td>
</tr>
<tr>
<td>COLUMN_NUMBER</td>
<td>7</td>
</tr>
<tr>
<td>START_BYTE</td>
<td>23</td>
</tr>
<tr>
<td>BYTES</td>
<td>12</td>
</tr>
<tr>
<td>ITEM_BYTES</td>
<td>2</td>
</tr>
<tr>
<td>ITEMS</td>
<td>6</td>
</tr>
<tr>
<td>DATA_TYPE</td>
<td>MSB_UNSIGNED_INTEGER</td>
</tr>
<tr>
<td>UNIT</td>
<td>"AMPS = 5E-10DN, 5E-9DN, 5E-10*DN, ..."</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4095</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"Detector bias current."</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>NAME</td>
<td>BIASVOLTTHIN</td>
</tr>
<tr>
<td>COLUMN_NUMBER</td>
<td>8</td>
</tr>
<tr>
<td>START_BYTE</td>
<td>35</td>
</tr>
<tr>
<td>BYTES</td>
<td>2</td>
</tr>
<tr>
<td>DATA_TYPE</td>
<td>MSB_UNSIGNED_INTEGER</td>
</tr>
<tr>
<td>UNIT</td>
<td>"VOLTS = 0.101*DN"</td>
</tr>
<tr>
<td>MINIMUM</td>
<td>0</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4095</td>
</tr>
<tr>
<td>DESCRIPTION</td>
<td>"Thin detector (D1, D3, D5) bias voltage."</td>
</tr>
<tr>
<td>END_OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>OBJECT</td>
<td>COLUMN</td>
</tr>
<tr>
<td>NAME</td>
<td>BIASVOLTTHICK</td>
</tr>
<tr>
<td>COLUMN_NUMBER</td>
<td>9</td>
</tr>
<tr>
<td>START_BYTE</td>
<td>37</td>
</tr>
<tr>
<td>BYTES</td>
<td>2</td>
</tr>
<tr>
<td>DATA_TYPE</td>
<td>MSB_UNSIGNED_INTEGER</td>
</tr>
</tbody>
</table>
UNIT = "VOLTS = 0.101*DN"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Thick detector (D2, D4, D6) bias voltage."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CALAMP
COLUMN_NUMBER = 10
START_BYTE = 39
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "VOLTS = 0.00100*DN"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Electrical calibration voltage amplitude."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LLDTHIN
COLUMN_NUMBER = 11
START_BYTE = 41
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "VOLTS = 0.000124*DN - 0.124"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Low Level Discriminator voltage for thin detectors (D1, D3, D5)."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LLDTHICK
COLUMN_NUMBER = 12
START_BYTE = 43
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "VOLTS = 0.000124*DN - 0.124"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Low Level Discriminator voltage for thick detectors (D2, D4, D6)."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TTELESCOPE
COLUMN_NUMBER = 13
START_BYTE = 45
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 100*V5plus - 0.100*DN - 273.2"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of telescope assembly (in UNITS formula, V5plus is expressed in volts)."

END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TANALOG
COLUMN_NUMBER = 14
START_BYTE = 47
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 100*V5plus - 0.100*DN - 273.2"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of analog electronics (in UNITS formula, V5plus is expressed in volts)."

END_OBJECT = COLUMN
OBJECT = COLUMN
COLUMN_NAME = TDIGITAL
COLUMN_NUMBER = 15
START_BYTE = 49
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 100*V5plus - 0.100*DN - 273.2"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of digital electronics (in UNITS formula, V5plus is expressed in volts)."

END_OBJECT = COLUMN
OBJECT = COLUMN
COLUMN_NAME = TPOWER
COLUMN_NUMBER = 16
START_BYTE = 51
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 100*V5plus - 0.100*DN - 273.2"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of regulate power supply (in UNITS formula, V5plus is expressed in volts)."

END_OBJECT = COLUMN
OBJECT = COLUMN
COLUMN_NAME = TREF
COLUMN_NUMBER = 17
START_BYTE = 53
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 100*V5plus - 0.100*DN - 273.2"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of reference location on telescope wall (in UNITS formula, V5plus is expressed in volts)."

END_OBJECT = COLUMN
OBJECT = COLUMN
COLUMN_NAME = RADHIGHSENS
COLUMN_NUMBER = 18
START_BYTE = 55
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "RADS = 0.00002*((DN+8)/16)"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "High Sensitivity Radiation monitor voltage."

END_OBJECT = COLUMN
OBJECT = COLUMN
COLUMN_NAME = RADMDESENS
COLUMN_NUMBER = 19
START_BYTE = 57
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "RADS = 0.00512*((DN+8)/16)"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Medium Sensitivity Radiation monitor voltage."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = RADLOWSENS
COLUMN_NUMBER = 20
START_BYTE = 59
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "RADS = 1.31*((DN+8)/16)"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Low Sensitivity Radiation monitor voltage."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TPRT
COLUMN_NUMBER = 21
START_BYTE = 61
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CELSIUS = 0.1299*(4*DN-1E4)/(5-DN/1E3)"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Temperature of reference location on instrument chassis (ground test only)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PURGE
COLUMN_NUMBER = 22
START_BYTE = 63
BYTES = 2
DATA_TYPE = MSB_UNSIGNED_INTEGER
UNIT = "CU FT/HR = DN-0.371*V5plus+19*(Tref-20)"
MINIMUM = 0
MAXIMUM = 4095
DESCRIPTION = "Flow rate of GN2 purge (ground test only; in UNITS formula, V5plus and Tref are expressed in volts and celsius)."
END_OBJECT = COLUMN
Appendix D Level 1 data record formats

This section shows the contents of the FMT files for each of the three types of Level 1 data.

D.1 Level 1 Primary Science Record (CRAT_L1_PRI.FMT)

```plaintext
OBJECKT       = COLUMN
   NAME       = SECONDS
   COLUMN_NUMBER = 1
   START_BYTE  = 1
   BYTES      = 9
   DATA_TYPE   = ASCII_INTEGER
   FORMAT      = I9
   UNIT        = SECONDS
   DESCRIPTION = "Elapsed time from 0h UT Jan 1 2001 to 1 Hz pulse."

END_OBJECKT

OBJECKT       = COLUMN
   NAME       = FRACT
   COLUMN_NUMBER = 2
   START_BYTE  = 11
   BYTES      = 2
   DATA_TYPE   = ASCII_INTEGER
   FORMAT      = I2
   UNIT        = "1/100 SECOND"
   DESCRIPTION = "Hundredths of a second from 1 Hz pulse."

END_OBJECKT

OBJECKT       = COLUMN
   NAME       = INDEX
   COLUMN_NUMBER = 3
   START_BYTE  = 14
   BYTES      = 6
   DATA_TYPE   = ASCII_INTEGER
   FORMAT      = I6
   UNIT        = "N/A"
   DESCRIPTION = "Index of event within the current second."

END_OBJECKT

OBJECKT       = COLUMN
   NAME       = AMPL
   COLUMN_NUMBER = 4
   START_BYTE  = 21
   BYTES      = 29
   ITEM_BYTES  = 4
   ITEM_OFFSET = 5
   ITEMS      = 6
   DATA_TYPE   = ASCII_INTEGER
   FORMAT      = I4
   UNIT        = "N/A"
   DESCRIPTION = "Amplitude in Detectors 1 to 6."

END_OBJECKT

OBJECKT       = COLUMN
   NAME       = ENERGY
   COLUMN_NUMBER = 5
   START_BYTE  = 51
   BYTES      = 65
   ITEM_BYTES  = 10
   ITEM_OFFSET = 11
   ITEMS      = 6
   DATA_TYPE   = ASCII_REAL
```

56
```plaintext
FORMAT = "E10.4"
UNIT = "ELECTRON VOLTS"
DESCRIPTION = "Energy deposited in Detectors 1 to 6."
END_OBJECT = COLUMN

D.2 Level 1 Secondary Science Record (CRAT_L1_SEC.FMT)

OBJECT = COLUMN
NAME = SECONDS
COLUMNNUMBER = 1
STARTBYTE = 1
BYTES = 9
DATATYPE = ASCII_INTEGER
FORMAT = 19
UNIT = SECONDS
DESCRIPTION = "Elapsed time from 0h UT Jan 1 2001 to timing pulse."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FRACT
COLUMNNUMBER = 2
STARTBYTE = 11
BYTES = 2
DATATYPE = ASCII_INTEGER
FORMAT = 12
UNIT = "1/100 SECOND"
DESCRIPTION = "Hundredths of a second from 1 Hz pulse."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = BIASCNTRL
COLUMNNUMBER = 3
STARTBYTE = 14
BYTES = 1
DATATYPE = ASCII_INTEGER
FORMAT = 11
UNIT = "N/A"
DESCRIPTION = "Detector Bias Delayed Control (1 = enabled)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = BIASCMD
COLUMNNUMBER = 4
STARTBYTE = 16
BYTES = 1
DATATYPE = ASCII_INTEGER
FORMAT = 11
UNIT = "N/A"
DESCRIPTION = "Detector Bias Voltage (1 = on)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = CALLOW
COLUMNNUMBER = 5
STARTBYTE = 18
BYTES = 1
DATATYPE = ASCII_INTEGER
FORMAT = 11
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Range Low (1 = enabled)."
END_OBJECT = COLUMN
```
NAME = CALHIGH
COLUMN_NUMBER = 6
START_BYTE = 20
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Range High (1 = enabled)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CALRATE
COLUMN_NUMBER = 7
START_BYTE = 22
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Rate (1 = 1953 /sec; 0 = 8 /sec)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PROCDFLAG
COLUMN_NUMBER = 8
START_BYTE = 24
BYTES = 11
ITEM_BYTES = 1
ITEM_OFFSET = 2
ITEMS = 6
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Detector Processing Enabled (1 = enabled)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LASTCMD
COLUMN_NUMBER = 9
START_BYTE = 36
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Address of Last Command."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LASTVALUE
COLUMN_NUMBER = 10
START_BYTE = 42
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Contents of Last Command."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHIN
COLUMN_NUMBER = 11
START_BYTE = 48
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Event Amplitude Discriminator Settings (D1,3,5)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHICK
COLUMN_NUMBER = 12
START_BYTE = 54
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Event Amplitude Discriminator Settings (D2,4,6)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MASK
COLUMN_NUMBER = 13
START_BYTE = 60
BYTES = 21
ITEM_BYTES = 10
ITEM_OFFSET = 11
ITEMS = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I10
UNIT = "N/A"
DESCRIPTION = "Discriminator Accept Mask (64 bits)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SINGLE
COLUMN_NUMBER = 14
START_BYTE = 82
BYTES = 35
ITEM_BYTES = 5
ITEM_OFFSET = 6
ITEMS = 6
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Detector Singles Counters 1 to 6."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = GOOD
COLUMN_NUMBER = 15
START_BYTE = 118
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Good Event Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = REJECT
COLUMN_NUMBER = 16
START_BYTE = 124
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
D.3 Level 1 Housekeeping Record (CRAT_L1_HK.FMT)

OBJECT = COLUMN
NAME = SECONDS
COLUMN_NUMBER = 1
START_BYTE = 1
BYTES = 9
DATA_TYPE = ASCII_INTEGER
FORMAT = I9
UNIT = SECONDS
DESCRIPTION = "Elapsed time from 0h UT Jan 1 2001 to timing pulse."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FRACT
COLUMN_NUMBER = 2
START_BYTE = 11
BYTES = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I2
UNIT = "1/100 SECOND"
DESCRIPTION = "Hundredths of a second from 1 Hz pulse."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = FPGA_SN
COLUMN_NUMBER = 3
START_BYTE = 14
BYTES = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I2
UNIT = "N/A"
DESCRIPTION = "FPGA Revision Code."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = V28BUS
COLUMN_NUMBER = 4
START_BYTE = 17
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLS
DESCRIPTION = "28VDC Monitor."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = V5DIGITAL
COLUMN_NUMBER = 5
START_BYTE = 25
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+5VDC Digital Monitor."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = VANALOGERR
COLUMN_NUMBER = 6
START_BYTE = 33
BYTES = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I2
UNIT = "N/A"
DESCRIPTION = "Analog Voltage Indicator (0: on; 15: off, so H/K is invalid)."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = V5PLUS
COLUMN_NUMBER = 7
START_BYTE = 36
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+5VDC Analog Monitor."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = V5NEG
COLUMN_NUMBER = 8
START_BYTE = 44
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "-5VDC Analog Monitor."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = I28BUS
COLUMN_NUMBER = 9
START_BYTE = 52
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+2.5VDC Internal Reference."
END_OBJECT = COLUMN

OBJECT = COLUMN
NAME = P28BUS
COLUMN_NUMBER = 10
START_BYTE = 60
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = WATTS
DESCRIPTION = "Instrument power (V28bus*I28bus)."
<table>
<thead>
<tr>
<th>COLUMN</th>
<th>COLUMN_NUMBER</th>
<th>START_BYTE</th>
<th>BYTES</th>
<th>ITEM_BYTES</th>
<th>ITEM_OFFSET</th>
<th>ITEMS</th>
<th>DATA_TYPE</th>
<th>FORMAT</th>
<th>UNIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIASCURRENT</td>
<td>11</td>
<td>68</td>
<td>47</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>AMPS</td>
<td>"Detector Bias Current Monitors."</td>
</tr>
<tr>
<td>BIASVOLTTHIN</td>
<td>12</td>
<td>116</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>VOLTS</td>
<td>"Thin Detector Bias Voltage Monitor."</td>
</tr>
<tr>
<td>BIASVOLTTHICK</td>
<td>13</td>
<td>124</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>VOLTS</td>
<td>"Thick Detector Bias Voltage Monitor."</td>
</tr>
<tr>
<td>CALAMP</td>
<td>14</td>
<td>132</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>VOLTS</td>
<td>"Electrical Calibration Amplitude Monitor."</td>
</tr>
<tr>
<td>LLDTHIN</td>
<td>15</td>
<td>140</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>VOLTS</td>
<td>"Thin Detector LLD Voltage Monitor."</td>
</tr>
<tr>
<td>LLDTHICK</td>
<td>16</td>
<td>148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "Thick Detector LLD Voltage Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TTELESCOPE
COLUMN_NUMBER = 17
START_BYTE = 156
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Telescope Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TANALOG
COLUMN_NUMBER = 18
START_BYTE = 164
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Analog Board Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TDIGITAL
COLUMN_NUMBER = 19
START_BYTE = 172
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Digital Board Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TPOWER
COLUMN_NUMBER = 20
START_BYTE = 180
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Power Supply Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TREF
COLUMN_NUMBER = 21
START_BYTE = 188
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Bulkhead Reference Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = RADHIGHSENS
COLUMN_NUMBER = 22
START_BYTE = 196
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "High Sensitivity Radiation monitor voltage."
END_OBJECT

COLUMN
NAME = RADMEDSENS
COLUMN_NUMBER = 23
START_BYTE = 207
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "Medium Sensitivity Radiation monitor voltage."
END_OBJECT

COLUMN
NAME = RADLOWSENS
COLUMN_NUMBER = 24
START_BYTE = 218
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "Low Sensitivity Radiation monitor voltage."
END_OBJECT

COLUMN
NAME = TPR
COLUMN_NUMBER = 25
START_BYTE = 229
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = CELSIUS
DESCRIPTION = "PRT Reference (Ground Test Only)."
END_OBJECT

COLUMN
NAME = PURGE
COLUMN_NUMBER = 26
START_BYTE = 240
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = "CUBIC FEET PER HOUR"
DESCRIPTION = "Purge Flow Rate (Ground Test Only)."
END_OBJECT
Appendix E Level 2 data record formats

This section shows the contents of the FMT files for each of the three types of Level 2 data.

E.1 Level 2 Primary Science Record (CRAT_L2_PRI.FMT)

OBJECT = COLUMN
 NAME = SECONDS
 COLUMN_NUMBER = 1
 START_BYTE = 1
 BYTES = 9
 DATA_TYPE = ASCII_INTEGER
 FORMAT = I9
 UNIT = SECONDS
 DESCRIPTION = "Elapsed time from 0h UT Jan 1 2001 to timing pulse."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = FRACT
 COLUMN_NUMBER = 2
 START_BYTE = 11
 BYTES = 2
 DATA_TYPE = ASCII_INTEGER
 FORMAT = I2
 UNIT = "1/100 SECOND"
 DESCRIPTION = "Hundredths of a second from 1 Hz pulse."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TIME
 COLUMN_NUMBER = 3
 START_BYTE = 15
 BYTES = 19
 DATA_TYPE = TIME
 FORMAT = A19
 UNIT = "N/A"
 DESCRIPTION = "1 Hz Timing Pulse time in UTC."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = INDEX
 COLUMN_NUMBER = 4
 START_BYTE = 36
 BYTES = 6
 DATA_TYPE = ASCII_INTEGER
 FORMAT = I6
 UNIT = "N/A"
 DESCRIPTION = "Index of event within the current second."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = AMPL
 COLUMN_NUMBER = 5
 START_BYTE = 43
 BYTES = 29
 ITEM_BYTES = 4
 ITEM_OFFSET = 5
 ITEMS = 6
 DATA_TYPE = ASCII_INTEGER
 FORMAT = I4
 UNIT = "N/A"
 DESCRIPTION = "Amplitude in Detectors 1 to 6."
E.2 Level 2 Secondary Science Record (CRAT_L2_SEC.FMT)

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Start Byte</th>
<th>Bytes</th>
<th>Item Bytes</th>
<th>Item Offset</th>
<th>Items</th>
<th>Data Type</th>
<th>Format</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY</td>
<td>73</td>
<td>65</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>ASCII_REAL</td>
<td>E10.4</td>
<td>ELECTRON VOLTS</td>
<td>Energy deposited in Detectors 1 to 6.</td>
</tr>
<tr>
<td>LET</td>
<td>139</td>
<td>65</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>ASCII_REAL</td>
<td>E10.4</td>
<td>ELECTRON VOLTS PER MICRON</td>
<td>Lineal energy transfer in silicon in Detectors 1 to 6.</td>
</tr>
<tr>
<td>DQI</td>
<td>205</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>32</td>
<td>ASCII_REAL</td>
<td>E10.4</td>
<td>N/A</td>
<td>Data quality indicator.</td>
</tr>
<tr>
<td>SECONDS</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>32</td>
<td>ASCII_INTEGER</td>
<td>I1</td>
<td>N/A</td>
<td>Flag fields.</td>
</tr>
</tbody>
</table>
DATA_TYPE = ASCII_INTEGER
FORMAT = I9
UNIT = SECONDS
DESCRIPTION = "Elapsed time from 0h UT Jan 1 2001 to timing pulse."

END_OBJECT
OBJECT = COLUMN
NAME = FRACT
COLUMN_NUMBER = 2
START_BYTE = 11
BYTES = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I2
UNIT = "1/100 SECOND"
DESCRIPTION = "Hundredths of a second from 1 Hz pulse."

END_OBJECT
OBJECT = COLUMN
NAME = TIME
COLUMN_NUMBER = 3
START_BYTE = 15
BYTES = 19
DATA_TYPE = TIME
FORMAT = A19
UNIT = "N/A"
DESCRIPTION = "1 Hz Timing Pulse time in UTC."

END_OBJECT
OBJECT = COLUMN
NAME = BIASCNTRL
COLUMN_NUMBER = 4
START_BYTE = 36
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Detector Bias Delayed Control (1 = enabled)."

END_OBJECT
OBJECT = COLUMN
NAME = BIASCMD
COLUMN_NUMBER = 5
START_BYTE = 38
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Detector Bias Voltage (1 = on)."

END_OBJECT
OBJECT = COLUMN
NAME = CALLOW
COLUMN_NUMBER = 6
START_BYTE = 40
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = I1
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Range Low (1 = enabled)."

END_OBJECT
OBJECT = COLUMN
NAME = CALHIGH
COLUMN_NUMBER = 7
START_BYTE = 42
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = II
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Range High (1 = enabled)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = CALRATE
COLUMN_NUMBER = 8
START_BYTE = 44
BYTES = 1
DATA_TYPE = ASCII_INTEGER
FORMAT = II
UNIT = "N/A"
DESCRIPTION = "Electrical Calibration Rate (1 = 1953 /sec; 0 = 8 /sec)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = PROCDFLAG
COLUMN_NUMBER = 9
START_BYTE = 46
BYTES = 11
ITEM_BYTES = 1
ITEM_OFFSET = 2
ITEMS = 6
DATA_TYPE = ASCII_INTEGER
FORMAT = II
UNIT = "N/A"
DESCRIPTION = "Detector Processing Enabled (1 = enabled)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LASTCMD
COLUMN_NUMBER = 10
START_BYTE = 58
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Address of Last Command."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = LASTVALUE
COLUMN_NUMBER = 11
START_BYTE = 64
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Contents of Last Command."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHIN
COLUMN_NUMBER = 12
START_BYTE = 70
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = I5
UNIT = "N/A"
DESCRIPTION = "Event Amplitude Discriminator Settings (D1,3,5)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = DISCTHICK
COLUMN_NUMBER = 13
START_BYTE = 76
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = 15
UNIT = "N/A"
DESCRIPTION = "Event Amplitude Discriminator Settings (D2,4,6)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = MASK
COLUMN_NUMBER = 14
START_BYTE = 82
BYTES = 21
ITEM_BYTES = 10
ITEM_OFFSET = 11
ITEMS = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I10
UNIT = "N/A"
DESCRIPTION = "Discriminator Accept Mask (64 bits)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = SINGLE
COLUMN_NUMBER = 15
START_BYTE = 104
BYTES = 35
ITEM_BYTES = 5
ITEM_OFFSET = 6
ITEMS = 6
DATA_TYPE = ASCII_INTEGER
FORMAT = 15
UNIT = "N/A"
DESCRIPTION = "Detector Singles Counters 1 to 6."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = GOOD
COLUMN_NUMBER = 16
START_BYTE = 140
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = 15
UNIT = "N/A"
DESCRIPTION = "Good Event Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = REJECT
COLUMN_NUMBER = 17
START_BYTE = 146
BYTES = 5
DATA_TYPE = ASCII_INTEGER
FORMAT = 15
UNIT = "N/A"
DESCRIPTION = "Event Reject Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = TOTAL
 COLUMN_NUMBER = 18
 START_BYTE = 152
 BYTES = 5
 DATA_TYPE = ASCII_INTEGER
 FORMAT = 15
 UNIT = "N/A"
 DESCRIPTION = "Total Event Counter."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = MOONVEC
 COLUMN_NUMBER = 19
 START_BYTE = 158
 BYTES = 35
 ITEM_BYTES = 11
 ITEM_OFFSET = 12
 ITEMS = 3
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = KM
 DESCRIPTION = "Spacecraft to Moon vector (J2000)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = SUNVEC
 COLUMN_NUMBER = 20
 START_BYTE = 194
 BYTES = 35
 ITEM_BYTES = 11
 ITEM_OFFSET = 12
 ITEMS = 3
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = KM
 DESCRIPTION = "Spacecraft to Sun vector (J2000)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CRATERVEC
 COLUMN_NUMBER = 21
 START_BYTE = 230
 BYTES = 35
 ITEM_BYTES = 11
 ITEM_OFFSET = 12
 ITEMS = 3
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = "N/A"
 DESCRIPTION = "CRaTER Boresight unit vector (J2000)."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = ALTITUDE
 COLUMN_NUMBER = 22
 START_BYTE = 266
 BYTES = 11
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = KM
DESCRIPTION = "Altitude above lunar surface."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = NADIR
 COLUMN_NUMBER = 23
 START_BYTE = 278
 BYTES = 11
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = DEGREES
 DESCRIPTION = "Angle between CRaTER boresight and nadir."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = GSEVEC
 COLUMN_NUMBER = 24
 START_BYTE = 290
 BYTES = 35
 ITEM_BYTES = 11
 ITEM_OFFSET = 12
 ITEMS = 3
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = KM
 DESCRIPTION = "Earth to CRaTER vector in GSE coordinates."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = GSMVEC
 COLUMN_NUMBER = 25
 START_BYTE = 326
 BYTES = 35
 ITEM_BYTES = 11
 ITEM_OFFSET = 12
 ITEMS = 3
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = KM
 DESCRIPTION = "Earth to CRaTER vector in GSM coordinates."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = LATITUDE
 COLUMN_NUMBER = 26
 START_BYTE = 362
 BYTES = 11
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = DEGREES
 DESCRIPTION = "Selenographic crust-fixed north latitude of CRaTER."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = LONGITUDE
 COLUMN_NUMBER = 27
 START_BYTE = 374
 BYTES = 11
 DATA_TYPE = ASCII_REAL
 FORMAT = "E11.4"
 UNIT = DEGREES
 DESCRIPTION = "Selenographic crust-fixed east longitude of CRaTER."
E.3 Level 2 Housekeeping Record (CRAT_L2_HK.FMT)

<table>
<thead>
<tr>
<th>Object</th>
<th>Name</th>
<th>Column Number</th>
<th>Start Byte</th>
<th>Bytes</th>
<th>Data Type</th>
<th>Format</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLUMN</td>
<td>SECONDS</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>ASCII_INTEGER</td>
<td>I9</td>
<td>SECONDS</td>
<td>"Elapsed time from 0h UT Jan 1 2001 to timing pulse."</td>
</tr>
<tr>
<td>COLUMN</td>
<td>FRACT</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>ASCII_INTEGER</td>
<td>I2</td>
<td>"1/100 SECOND"</td>
<td>"Hundredths of a second from 1 Hz pulse."</td>
</tr>
<tr>
<td>COLUMN</td>
<td>TIME</td>
<td>3</td>
<td>15</td>
<td>19</td>
<td>TIME</td>
<td>A19</td>
<td>N/A</td>
<td>"1 Hz Timing Pulse time in UTC."</td>
</tr>
<tr>
<td>COLUMN</td>
<td>FPGA_SN</td>
<td>4</td>
<td>36</td>
<td>2</td>
<td>ASCII_INTEGER</td>
<td>I2</td>
<td>"N/A"</td>
<td>"FPGA Revision Code."</td>
</tr>
<tr>
<td>COLUMN</td>
<td>V28BUS</td>
<td>5</td>
<td>39</td>
<td>7</td>
<td>ASCII_REAL</td>
<td>"F7.3"</td>
<td>VOLTS</td>
<td>"28VDC Monitor."</td>
</tr>
<tr>
<td>COLUMN</td>
<td>V5DIGITAL</td>
<td>6</td>
<td>47</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+5VDC Digital Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = VANALOGERR
COLUMN_NUMBER = 7
START_BYTE = 55
BYTES = 2
DATA_TYPE = ASCII_INTEGER
FORMAT = I2
UNIT = "N/A"
DESCRIPTION = "Analog Voltage Indicator (0: on; 15: off, so H/K is invalid)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = V5PLUS
COLUMN_NUMBER = 8
START_BYTE = 58
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+5VDC Analog Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = V5NEG
COLUMN_NUMBER = 9
START_BYTE = 66
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "-5VDC Analog Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = I28BUS
COLUMN_NUMBER = 10
START_BYTE = 74
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "+2.5VDC Internal Reference."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = P28BUS
COLUMN_NUMBER = 11
START_BYTE = 82
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = WATTS
DESCRIPTION = "Instrument power (V28bus*I28bus)."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = BIASCURRENT

73
COLUMN NUMBER = 12
START_BYTE = 90
BYTES = 47
ITEM_BYTES = 7
ITEM_OFFSET = 8
ITEMS = 6
DATA_TYPE = ASCII_REAL
FORMAT = "F7.3"
UNIT = AMPS
DESCRIPTION = "Detector Bias Current Monitors."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = BIASVOLTTHIN
 COLUMN_NUMBER = 13
 START_BYTE = 138
 BYTES = 7
 DATA_TYPE = ASCII_REAL
 FORMAT = "F7.3"
 UNIT = VOLTS
 DESCRIPTION = "Thin Detector Bias Monitor voltage."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = BIASVOLTTHICK
 COLUMN_NUMBER = 14
 START_BYTE = 146
 BYTES = 7
 DATA_TYPE = ASCII_REAL
 FORMAT = "F7.3"
 UNIT = VOLTS
 DESCRIPTION = "Thick Detector Bias Monitor voltage."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = CALAMP
 COLUMN_NUMBER = 15
 START_BYTE = 154
 BYTES = 7
 DATA_TYPE = ASCII_REAL
 FORMAT = "F7.3"
 UNIT = VOLTS
 DESCRIPTION = "Electrical Calibration Amplitude Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = LLDTHIN
 COLUMN_NUMBER = 16
 START_BYTE = 162
 BYTES = 7
 DATA_TYPE = ASCII_REAL
 FORMAT = "F7.3"
 UNIT = VOLTS
 DESCRIPTION = "Thin Detector LLD Voltage Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
 NAME = LLDTHICK
 COLUMN_NUMBER = 17
 START_BYTE = 170
 BYTES = 7
 DATA_TYPE = ASCII_REAL
 FORMAT = "F7.3"
UNIT = VOLTS
DESCRIPTION = "Thick Detector LLD Voltage Monitor."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = Telescope
COLUMN_NUMBER = 18
START_BYTE = 178
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Telescope Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TANALOG
COLUMN_NUMBER = 19
START_BYTE = 186
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Analog Board Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TDIGITAL
COLUMN_NUMBER = 20
START_BYTE = 194
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Digital Board Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TPOWER
COLUMN_NUMBER = 21
START_BYTE = 202
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Power Supply Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = TREF
COLUMN_NUMBER = 22
START_BYTE = 210
BYTES = 7
DATA_TYPE = ASCII_REAL
FORMAT = "F7.2"
UNIT = CELSIUS
DESCRIPTION = "Bulkhead Reference Temperature."
END_OBJECT = COLUMN
OBJECT = COLUMN
NAME = RADHIGHSENS
COLUMN_NUMBER = 23
START_BYTE = 218
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "High Sensitivity Radiation monitor voltage."
END_OBJECT
OBJECT = COLUMN
NAME = RADMEDSENS
COLUMN_NUMBER = 24
START_BYTE = 229
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "Medium Sensitivity Radiation monitor voltage."
END_OBJECT
OBJECT = COLUMN
NAME = RADLOWSENS
COLUMN_NUMBER = 25
START_BYTE = 240
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "Low Sensitivity Radiation monitor voltage."
END_OBJECT
OBJECT = COLUMN
NAME = TPR
COLUMN_NUMBER = 26
START_BYTE = 251
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = CELSIUS
DESCRIPTION = "PRT Reference (Ground Test Only)."
END_OBJECT
OBJECT = COLUMN
NAME = PURGE
COLUMN_NUMBER = 27
START_BYTE = 262
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = "CUBIC FEET PER HOUR"
DESCRIPTION = "Purge Flow Rate (Ground Test Only)."
END_OBJECT
OBJECT = COLUMN
NAME = RADTOTAL
COLUMN_NUMBER = 28
START_BYTE = 273
BYTES = 10
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = RADS
DESCRIPTION = "Cumulative instrument radiation dosage."
END_OBJECT
OBJECT = COLUMN
NAME = BIASENERGY
COLUMN_NUMBER = 29
START_BYTE = 284
BYTES = 65
ITEM_BYTES = 10
ITEM_OFFSET = 11
ITEMS = 6
DATA_TYPE = ASCII_REAL
FORMAT = "E10.4"
UNIT = "ELECTRON VOLTS"
DESCRIPTION = "Detector Bias Monitor energies."
END_OBJECT = COLUMN