Systems Engineering
(plus Data, Digital, Power)

Bob Goeke
617-253-1910
goeke@space.mit.edu
Who Am I?

• Recent history: Project Engineer for
 – RXTE: All Sky Monitor and Experiment Data System \textit{(in year 10 of operation)}
 – Chandra: CCD spectrometer \textit{(in year 6 of operation)}
 – VOILa: a virtual reality experiment on ISS; cancelled last Fall.

• Currently:
 – Chief Engineer for Center
 – CRaTER Project Engineer
Engineering Web Site
<http://snebulos.mit.edu/projects/crater/>

• Configuration Data Base
 – Repository for all past and present controlled documents, drawings, parts, etc.
 – Upload capability for ECOs and general info
 – Report generator

• Reference Documents
CRaTER Coincidence Logic

CRaTER Sensor Head Logic

- Detector geometry and coincidences between detector signals allow for determination of “good” versus “bad” particle event

- “Good” event is one in which pathlength through stack is well-determined and from which LET can be determined

<table>
<thead>
<tr>
<th>Coincidences</th>
<th>Comments on constraints of particle path lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>2•3•4•5</td>
<td>Poorly constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Al1 and TEP1 ól's well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Al1, TEP1, and TEPC ól's well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Scatter diagnostic</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Scatter diagnostic; TEP1 ól still well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Scatter diagnostic; TEP2 ól still well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Scatter diagnostic</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Al1, TEP1, TEPC, and TEP2 ól's well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Poorly constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>TEP1 and TEPC ól's well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Scatter possibility</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Al1, TEP1 ól's weakly constrained; TEPC ól well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Poorly constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>TEP2 ól well constrained</td>
</tr>
<tr>
<td>2•3•4•5</td>
<td>Poorly constrained</td>
</tr>
</tbody>
</table>
Flight Resources

• Mass Best Estimate
 – Proposal: 4.3Kg
 – Current WAG: 4.5Kg + x from Guilio

• Power Best Estimate
 – Proposal: 4.6W
 – Current WAG: 4.2W + A/D converters

• Data
 – Typical: 400bps Flare: 100Kbps
Data System Requirements

- 1553 interface to spacecraft
- CCSDS packets to data system
- 12 bit resolution of science data
- Flexibility to handle detector noise
- Flexibility to handle data rates
- Flexibility to handle event selection
Thermal System

• Not staffed up yet.
• With single layer MLI over both apertures and multilayer elsewhere, not a difficult problem.
• Six feet through which to conduct heat.
• Curious as to what thermal environment is predicted (hot is noisier for detectors than cold).
Flight Operations

- Instrument has one operating mode (currently 16 bytes of configuration data)
- CCSDS packets up and down
- Internal calibration is a single command
- External (flight) calibration is the regular operating mode, pointed off nadir.
- Will request real time engineering data feed.
Current Issues

• Power
 – Overhead cost of regulated power supplies
 – Rad-hard A/D converters
• Field-of-View and Accomodations
• Telemetry architecture
 – Reserved bandwidth for specific event classes?
• SEU error handling
Questions

• What is the schedule for Instrument ICDs?
• When will we see the Contamination Control Plan?
• Who is our contact for radiation info on parts?