Test and Verification

C. J. Sweeney
Boston Univ.
Protoflight Test Program

Environmental Verification Test Matrix

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observatory</td>
<td>T</td>
<td>T</td>
<td></td>
<td>Reference Only</td>
</tr>
<tr>
<td>Flight Unit</td>
<td>32-10000</td>
<td>50/200Hz</td>
<td>NR</td>
<td>12G</td>
<td>14Gms</td>
<td>8G</td>
<td>NR</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>+40/50</td>
<td>+35/30</td>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>EMC by similarity</td>
</tr>
<tr>
<td>Flight Spare</td>
<td>32-10000</td>
<td>50/200Hz</td>
<td>NR</td>
<td>12G</td>
<td>14Gms</td>
<td>8G</td>
<td>NR</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>+40/50</td>
<td>+35/30</td>
<td>8</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>Thermal Balance by similarity</td>
</tr>
<tr>
<td>Telesc.</td>
<td>32-10100</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Telesc. Spare</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>Electr. Box</td>
<td>32-10200</td>
<td></td>
<td>Listed for ref. only</td>
</tr>
<tr>
<td>Engineering Unit</td>
<td></td>
</tr>
<tr>
<td>Verification Plan Ref.</td>
<td>5.1</td>
<td>5.2</td>
<td>5.3</td>
<td>5.4</td>
<td>5.5</td>
<td>5.6</td>
<td>5.7</td>
<td>5.8</td>
<td>5.9</td>
<td>8.2.1</td>
<td>8.2.2</td>
<td>4.4</td>
<td>6.1</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **A** = Analysis
- **I** = Inspection
- **NR** = Not Required
- **T** = Test

Temperature Units = °C

Cosmic Ray Telescope for the Effects of Radiation
Test Facilities

Calibration: 88” Cyclotron, Berkley, CA

EMC: Chomerics, Woburn, MA

Vibration: Draper Labs, Cambridge, MA

Thermal-Vac: MIT/MKI, Cambridge, MA
EGSE: Command and Data Simulator

- Simulator consists of a 1553-to-ethernet packet converter, a 28 VDC power supply, and a 1 Hz sync pulse source.
- Single TCP/IP socket for commands; multiple UDP connections for telemetry.
- Software for commands, engineering, and science resides on available workstations.
- Future trade study will determine software choice, e.g., PearlTK, LabView, etc.
MGSE: Gas Purge

- All sensitive equipment (e.g., telescope, detectors) will be stored under clean, low-humidity conditions (e.g., active dessication, purging)
- Flight units will have provision for clean, dry nitrogen purging
- Purge flow will be monitored with a thermistor flow indicator
Cosmic Ray Telescope for the Effects of Radiation